

ESTUDIO COSECHA DE AGUAS LLUVIAS EN ÁREAS DE SECANO REGIÓN DE COQUIMBO

Tomo III

Jorge Romero Navea Ingeniero Agrónomo Consultor en Proyectos de Riego Agrícola

Noviembre, 2015

INDICE

1.	INTE	RODUCCIÓN	. 1
1	l.1	Generalidades	. 1
1	L. 2	Objetivos y Alcances	. 2
	Obje	etivo general	. 2
	Alca	nces	. 2
1	L.3	Estructura del Informe	. 2
2.	ANÁ	LISIS DE LA INFORMACIÓN DISPONIBLE	. 3
2	2.1	Aspectos Generales	. 3
2	2.2	Antecedentes Topo-batimétricos	. 3
2	2.3	Caudales de Crecida	. 3
2	2.4	Antecedentes de Mecánica de Suelos	. 4
3.	ANÁ	LISIS HIDRÁULICO	. 4
3	3.1	Consideraciones Iniciales	. 4
3	3.2	Caudales de Crecidas y Diseño	. 5
3	3.3	Elementos de Simulación Hidráulica	. 6
	Coe	ficientes de rugosidad	. 6
	Régi	imen de escurrimiento y condiciones de borde	. 7
	Perf	iles transversales	. 7
3	3.4	Análisis Situación Sin Proyecto	. 7
3	3.5	Análisis Situación Con Proyecto	13
	Gen	eralidades	13
	Con	sideraciones hidráulicas	14
	Resu	ultados situación con proyecto	16
4.	ESTU	JDIO DE MECÁNICA FLUVIAL	27
4	l.1	Generalidades	27
4	1.2	Metodologías para Cálculo de la Socavación	27
4	1.3	Longitud de la sábana de protección al pie	28
4	1.4	Resultados	30
5.		ERMINACION DE LAS CAPACIDADES DE ACUMULACION SUPERFICIAL DE AGUAS DE L AS DE INTERCEPCION DE ESCURRIMIENTO SUPERFICIAL	
5	5.1	ANTECEDENTES	33

	5.2 MICRO	CAPACIDAD DE ACUMULACIÓN SUPERFICIAL DE AGUA DE LAS OBRAS DE LA DCUENCA LA ISLA – PEÑA BLANCA	33
	5.3	CAPACIDAD DE ACUMULACIÓN SUPERFICIAL DE AGUA DE LAS OBRAS DE LA	
	MICRO	DCUENCA LOS RULOS – CANELA ALTA	35
	5.4	CAPACIDAD DE ACUMULACIÓN SUPERFICIAL DE AGUA DE LAS OBRAS DE LA	26
6		OCUENCA LA MORALINA – MANQUEHUA ALISIS HIDROLÓGICO OPERACIONAL DE LAS OBRAS DE INTERCEPCIÓN	
0		URRIMIENTO DE AGUAS LLUVIAS	
	6.1	MICROCUENCA LA ISLA. PEÑA BLANCA	39
	6.2	MICROCUENCA LOS RULOS. CANELA ALTA.	42
	6.3	MICROCUENCA LA MORALINA. MANQUEHUA	45
	6.4	EXCEDENTES DE AGUA EN LAS MICROCUENCAS.	48
	6.4.1	MICROCUENCA LA ISLA. PEÑA BLANCA.	48
	6.4.2	MICROCUENCA LOS RULOS. CANELA ALTA.	49
	6.4.3	MICROCUENCA LA MORALINA. MANQUEHUA.	50
7	. DISI	EÑO ESTRUCTURAL PRESAS DE GAVIONES.	51
	7.1	SECTOR LA ISLA – BASES DE CÁLCULO.	51
	7.1.1	Generalidades.	51
	7.1.2	Normas	51
	7.1.3	Cargas y sobrecargas verticales	52
	7.1.4	Cargas dinámicas. Análisis sísmico.	52
	7.1.5	Cálculo estabilidad de gaviones.	52
	7.1.6	Verificación de tensiones en suelo	53
	7.1.7	Resultados	53
	7.2	SECTOR LOS RULOS – BASES DE CÁLCULO.	55
	7.2.1	Generalidades	55
	7.2.2	Normas.	55
	7.2.3	Cargas y sobrecargas verticales	56
	7.2.4	Cargas dinámicas. Análisis sísmico	56
	7.2.5	Cálculo estabilidad de gaviones	56
	7.2.6	Verificación de tensiones en suelo	56
	7.2.7	Resultados	
	7.3	SECTOR LA MORALINA – BASES DE CÁLCULO.	58
	7.3.1	Generalidades.	58

7.3.2	Normas
7.3.3	Cargas y sobrecargas verticales
7.3.4	Cargas dinámicas. Análisis sísmico
7.3.5	Cálculo estabilidad de gaviones
7.3.6	Verificación de tensiones en suelo59
7.3.7	Resultados
8. TUBE	ERÍA DE DRENAJE Y POZO LATERAL
9. MET	ODOLOGIA DE DISEÑO DE OBRAS DE INTERCEPCION DE FLUJO SUPERFICIAL61
9.1	Elección del punto de emplazamiento de las obras
9.1.1	Cuenca aportante61
9.1.2	Pendiente del cauce principal
9.1.3	Determinación de la superficie de la cuenca aportante
9.1.4	Considerar obras, construcciones existentes y áreas agrícolas en uso
9.1.5	Cálculos hidrológicos
9.1.6	Cálculos hidráulicos
9.1.7	Tipo de obras recomendadas
9.1.8	Cálculos estructurales
9.1.9	Presupuesto
10. PRES	UPUESTO DE LAS OBRAS DISEÑADAS
10.1	Presupuestos detallados
10.1.1	Presupuestos detallados de las obras de la Microcuenca La Isla . Peña Blanca 65
10.1.2	Presupuestos detallados de las obras de la Microcuenca Los Rulos. Canela Alta 68
10.1.3	Presupuestos detallados de las obras de la Microcuenca La Moralina. Manquehua 71
10.1.4	Resumen Presupuestos detallados
11. CON	CLUSIONES
	DMENDACIONES DE FINANCIAMIENTO FUTURO DE OBRAS DE COSECHA DE AGUAS (1AS75

CALCULOS HIDRÁULICOS

1. INTRODUCCIÓN

1.1 Generalidades

El presente Informe se enmarca dentro del proyecto de estudio de cosecha de aguas lluvias en áreas de secano, en la IV Región de Coquimbo, mediante el diseño y construcción de embalses subterráneos, elaborado por el consultor Jorge Romero Navea a petición de la Corporación Regional de Desarrollo Productivo (CRDP). El estudio forma parte del replanteo estratégico que busca enfrentar el escenario hídrico futuro de la región, el cual se encuentra en un momento crítico debido a la escasez del vital elemento, integrando la institucionalidad pública y académica y la comunidad.

El análisis desarrollado se refiere a la estimación de los niveles de escurrimiento y análisis de socavaciones en las 3 quebradas menores de régimen de escorrentía intermitente que forman parte del estudio, ubicadas en las comunas de Canela, Combarbalá y Ovalle, en la Región de Coquimbo, considerando una crecida de período de retorno de 200 años. Las cuencas estudiadas pertenecen a las Comunidades Agrícolas de Canela, Manquehua y Peñablanca, y son denominadas Los Rulos, La Moralina y La Isla, respectivamente.

En la Figura 1.1 se muestra la ubicación general del área de estudio.



Figura 1.1. Ubicación General del Área de Estudio

Fuente: Mapa Base Turismo Virtual. Elaboración y Modificación Propia Jorge Romero Navea

Las cuencas de estudio forman parte de las hoyas hidrográficas de los ríos Choapa (Los Rulos) y Limarí (La Moralina y La Isla). Estos sectores presentan un clima semi-árido templado (con estación seca prolongada) con temperaturas elevadas durante el día, aunque éstas descienden bastante durante las noches dada la amplitud térmica diaria de la región (que es del orden de los 18° a 20°). Por su parte, las precipitaciones son de régimen frontal y se presentan mayoritariamente en invierno, donde precipita más del 80% del total anual. Lo anterior permite considerar un régimen de caudales primordialmente pluvial.

Los sectores de análisis y simulación hidráulica comprenden extensiones de 1,000 metros para La Moralina, y de 500 metros para Los Rulos y La Isla, aproximadamente, establecidas en cada quebrada de estudio. El análisis comprende el estudio de crecidas en la situación natural del cauce (situación sin proyecto) y la situación con las barreras de intercepción superficiales proyectadas (situación con proyecto).

Los caudales de crecidas utilizados, han sido definidos en el informe de hidrología denominado "Estudio Cosechas de Aguas Lluvias en Áreas de Secano, Región de Coquimbo – Informe de Hidrología", desarrollado por Romero e Hijo Ingeniería en julio de 2015. En aquel informe, se han determinado los caudales de crecida para períodos de retorno de 2, 5, 10, 20, 50, 100 y 200 años.

1.2 Objetivos y Alcances

Objetivo general

El objetivo principal del presente estudio corresponde a la estimación de los niveles de escurrimiento y socavación para los caudales de crecidas de 200 años de período de retorno en las 3 quebradas seleccionadas en el estudio de cosecha de aguas lluvia, en los puntos de emplazamiento de los muros de contención para infiltración de los embalses subterráneos propuestos.

Alcances

Los alcances del presente estudio son enumerados a continuación:

- Definición de los caudales de crecidas de diseño para el análisis hidráulico y mecánico fluvial.
- Estimación de las alturas de escurrimiento en las 3 quebradas definidas para el estudio, en las situaciones sin y con proyecto.
- Determinación de la socavación máxima que ocurre en el lecho del río producto del emplazamiento de las barreras de intercepción superficial para las 3 quebradas en estudio.

1.3 Estructura del Informe

El presente informe está estructurado en 4 Capítulos, según se detalla a continuación.

El Capítulo 1 corresponde a la presente Introducción.

En el Capítulo 2 se lleva a cabo un análisis de los antecedentes disponibles para el desarrollo de esta consultoría. Incluye información cartográfica, hidrológica y antecedentes de mecánica de suelos, de utilidad para los fines del estudio.

El Capítulo 3 corresponde a los análisis del eje hidráulico para las crecidas de diseño definidos en los sectores de emplazamiento de los muros de infiltración propuestos, para las situaciones sin y con proyecto.

Finalmente, en el Capítulo 4 se desarrolla el análisis de socavación máxima de las 3 quebradas de estudio, para la situación con proyecto.

2. ANÁLISIS DE LA INFORMACIÓN DISPONIBLE

2.1 Aspectos Generales

Para llevar a cabo el estudio hidráulico de las cuencas de interés, se recopiló un conjunto de antecedentes disponibles, correspondientes a información hidrológica existentes en la zona de estudio, información cartográfica y antecedentes de mecánica de suelos de las cuencas de interés.

Los antecedentes empleados en el desarrollo del presente estudio se detallan a continuación.

2.2 Antecedentes Topo-batimétricos

Se cuenta con un levantamiento topo-batimétrico láser, escala 1 : 1,000, con referencia a coordenadas UTM, datum WGS84, con curvas de nivel cada 1 metro de cada una de las zonas de interés, donde se ubicarán las obras de intercepción de escurrimiento de aguas lluvias, desarrollado por el equipo topográfico de la empresa Consultora.

2.3 Caudales de Crecida

Se incluyen los caudales de crecidas para los períodos de retorno mostrados en la Tabla 2.1, los cuales fueron obtenidos del estudio hidrológico desarrollado por Romero e Hijo Ingeniería, "Estudio Cosecha de Aguas Lluvias en Áreas de Secano, Región de Coquimbo – Informe de Hidrología", julio 2015.

Tabla 2.1. Resumen Caudales Máximos Instantáneos [m3/s] – Sectores de Interés

Т	SECTOR								
[años]	LOS RULOS	LA MORALINA	LA ISLA						
2	2,6	4,3	0,4						
5	8,1	17,2	1,2						
10	12,5	28,2	1,9						
20	17,.2	39,9	2,7						
50	23,6	56,2	3,8						
100	28,5	68,6	4,7						
200	33,5	81,4	5,6						

Fuente: "Estudio Cosecha de Aguas Lluvia en Áreas de Secano, Región de Coquimbo – Informe de Hidrología", Jorge Romero Navea, julio 2015, Tabla 4.3.

2.4 Antecedentes de Mecánica de Suelos

Se dispone de 3 informes de ensayos de suelos y de granulometría y constantes físicas (uno para cada cuenca de estudio), desarrollados por la Fundación de Investigación y Control de Calidad de la Facultad de Ingeniería de la Universidad de La Serena (INVECC), realizados durante los meses de mayo y junio de 2015.

En estos informes, presentados en el Anexo I, se exploraron los fondos de los 3 cauces de estudio mediante calicatas de distintas profundidades. Las muestras obtenidas se sometieron a un análisis granulométrico y clasificación de suelo según el sistema USCS.

En la Tabla 2.2 se muestra un resumen con las principales características de las muestras ensayadas.

Tabla 2.2. Características geomecánicas principales de las cuencas de interés

SECTOR	ÁREA	COORD. SALIDA UTM- WGS84		CALIC	CLASIFIC. SUELO		DMCS	I. PLAST
	[km2] ESTE [m] NORTE [m]		[cant]	[tipo]	[USCS]	[kg/dm³]	[%]	
Los Rulos	11,96	286.,395	6.543.228	1	Arena arcillosa	SC	2,125	15
La Moralina	37,27	294.424	6.574.094	2	Grava arcillosa	GC	2,079	13
La Isla	1,99	256.924	6.578.903	2	Arena arcillosa	SC	2,053	11

Fuente: Elaboración Propia Romero e Hijo Ingeniería

Donde:

CALIC : Cantidad de calicatas utilizadas en el muestreo.

DMCS : Densidad máxima compactada del suelo.

I. PLAST : Índice de plasticidad del suelo.

3. ANÁLISIS HIDRÁULICO

3.1 Consideraciones Iniciales

Los cauces de interés para el desarrollo de este estudio, corresponden a quebradas menores, pertenecientes a las cuencas de los ríos Choapa (sector Los Rulos, de la Comunidad Agrícola de Canela Alta) y cuencas costeras del río Limarí (sector La Isla, de la Comunidad Agrícola de Peñablanca) y del área media de la cuenca del río Limarí (sector La Moralina, de la Comunidad Agrícola de Manquehua), que solo presentan escorrentía durante los eventos de precipitación, por lo que sus regímenes de escorrentía son intermitentes y de origen netamente pluvial.

El análisis hidráulico desarrollado en el estudio, incluye los sectores de emplazamiento de los muros de intercepción superficial de aguas lluvias proyectados en los cauces de interés, considerando tramos que varían entre los 480 y 1,048 m de longitud, aproximadamente, según los antecedentes topo – batimétricos descritos en el punto 2.2. El análisis se efectúa tanto para la condición natural del cauce como para la situación con proyecto.

Para determinar los niveles de inundación para el período de retorno de diseño (T= 200 años), se desarrolló un modelo hidráulico mediante el software HEC-RAS, en su versión 4.1.0, desarrollado por el Hydrologic Englneering Center del United Army Corps of Englneering de Estados Unidos. Este programa permite resolver el cálculo del eje hidráulico utilizando un modelo numérico de flujo unidimensional para estimar las alturas de agua, velocidades y demás parámetros hidráulicos de interés, en las diferentes secciones transversales ingresadas por el usuario.

Por su parte, el diseño de las obras de intercepción (correspondientes a gaviones) debe responder a dos consideraciones importantes:

- i. El objetivo principal es que las estructuras sirvan como interceptores de la escorrentía superficial, de manera que permitan acumular aguas lluvias y favorecer la infiltración, razón por la cual su diseño debe asegurar la obstrucción total del cauce en los sectores de emplazamiento.
- ii. A su vez, las obras deben funcionar como vertederos, capaces de evacuar la crecida de diseño de período de retorno T=200 años. En estos casos, el diseño tipo adoptado corresponde a vertederos de cresta ancha y horizontal.

Las demás características y condiciones utilizadas en el desarrollo del modelo se presentan en los puntos siguientes.

3.2 Caudales de Crecidas y Diseño

Los caudales de crecidas son obtenidos del estudio hidrológico desarrollado por Romero e Hijo Ingeniería, "Estudio Cosecha de Aguas Lluvias en Áreas de Secano, Región de Coquimbo – Informe de Hidrología", julio 2015, según lo dispuesto en el acápite 2.3 y mostrados en la Tabla 2.1.

Para desarrollar el análisis hidráulico en los sectores de interés, se han considerado como condiciones de diseño una vida útil de 20 años para las estructuras de intercepción de escorrentía superficial y una seguridad hidrológica del 90% (probabilidad de que la estructura no falle durante el transcurso de su vida útil). Dado que la probabilidad de ocurrencia de un evento de precipitación anual de magnitud superior a la usada en el diseño es independiente, la probabilidad de falla o riesgo (r) durante la vida útil de la estructura se determina mediante la ecuación (1):

$$r = 1 + (1 - \frac{1}{T})^n$$
 (Ec. 1)

Donde: r: probabilidad de falla [%].

n: vida útil [años]

T: período de retorno [años]

Luego, dadas condiciones de diseño adoptadas (r= 10%, n= 20 años), se determina una crecida de diseño asociada a un período de retorno de 190 años. En forma conservadora, se adopta un período de retorno de T= 200 años como condición de diseño. Los caudales de crecidas asociados a cada quebrada de interés se presentan en la Tabla 3.1.

Tabla 3.1. Caudales de diseño, sectores de interés

T _{DISEÑO}	CAUDAL DE DISEÑO [m3/s]								
[años]	LOS RULOS	LA MORALINA	LA ISLA						
200	33,5	81,4	5,6						

Fuente: Elaboración Propia Jorge Romero Navea

3.3 Elementos de Simulación Hidráulica

Coeficientes de rugosidad

Para el desarrollo de la simulación hidráulica en las quebradas de interés, se utilizó el coeficiente de rugosidad de Manning, determinado a base del método de Cowan y caracterizando el sedimento según la ecuación de Strickler. Los métodos mencionados se detallan a continuación.

Método de Cowan, para el cálculo del coeficiente de rugosidad n:

$$n = m * (n_0 + n_1 + n_2 + n_3 + n_4)$$
 (Ec. 2)

Donde: n₀: rugosidad base para un canal recto, uniforme y con rugosidad homogénea.

n₁: rugosidad adicional por irregularidades superficiales

n₂: rugosidad adicional por variación de forma y sección a lo largo del tramo de estudio.

 n_3 : rugosidad adicional por obstrucciones en el cauce.

n₄: rugosidad adicional por presencia de vegetación

m: factor de corrección para incorporar el efecto de sinuosidad del cauce

Ecuación de Strickler, para estimar no en régimen hidrodinámicamente rugoso:

$$n_0 = 0.038 * D^{\frac{1}{6}}$$
 (Ec. 3)

Donde: D: diámetro representativo de la rugosidad superficial [m].

El coeficiente de rugosidad se estimó en cada quebrada de estudio diferenciando entre el cauce principal y sus planicies de inundación, dadas las diferencias de vegetación y obstrucciones en cada sector, principalmente.

En este análisis se ha definido como tamaño representativo de la distribución granulométrica el diámetro D_{84} , el cual se utiliza para describir la fracción gruesa de la distribución, la cual se vincula con la rugosidad de la superficie granular acorazada. Este valor (D_{84}) ha sido obtenido de los antecedentes de mecánica de suelos descritos en el punto 2.4 y presentados en el Anexo I.

En la Tabla 3.2 se muestra el cálculo del coeficiente de rugosidad de Manning.

Tabla 3.2. Cálculo n de Manning

		LOS	RULOS	LA MO	DRALINA	LA	ISLA
PARÁMETRO	ARÁMETRO TIPO		PLANICIE	CAUCE	PLANICIE	CAUCE	PLANICIE
D ₈₄	Diám. Caract. [mm]	7,000	7,000	22,000	27,000	1,400	1,700
n0	Material del lecho	0,017	0,017	0,020	0,021	0,013	0,013
n1	1 Irregularidades		0,005	0,004	0,005	0,004	0,004
n2	Variación de Sección	0,010	0,01	0,003	0,003	0,005	0,005
n3	Obstrucciones	0,010	0,01	0,01	0,02	0,003	0,003
n4	Vegetación		0,025	0,005	0,025	0,003	0,003
m	Meandrosidades	1,030	1,030	1,050	1,050	1,150	1,150
n	n= (n0 + n1 + n2 + n3 + n4)* m	0,048	0,069	0,044	0,078	0,032	0,032

Fuente: Elaboración Propia Jorge Romero Navea

Régimen de escurrimiento y condiciones de borde

Los regímenes de escurrimiento son considerados subcríticos a lo largo de todo el trazado de simulación en las quebradas de interés, con singularidades aisladas en las que se obtienen alturas críticas. El análisis de las condiciones de borde adopta altura normal en los perfiles de más aguas abajo, calculadas a base de las pendientes de los tramos estudiados, con la finalidad de representar la condición de régimen de río en los tramos de simulación.

Perfiles transversales

Para desarrollar la simulación hidráulica de los tramos de interés, se utilizaron un total de 54 perfiles transversales para el sector La Moralina, 30 perfiles transversales para el sector Los Rulos y 27 perfiles transversales en el sector La Isla, abarcando longitudes de 1,048 m, 580 m y 480 m, respectivamente. Los perfiles transversales se encuentran espaciados 20 m entre sí, aproximadamente, y su denominación corresponde al kilometraje evaluado según la dirección del flujo, estableciendo el perfil 0.000 en el sector de más aguas arriba analizado. La ubicación de los perfiles transversales utilizados se presenta en los planos adjuntos en el presente Informe, para cada sector de estudio.

3.4 Análisis Situación Sin Proyecto

En primer término se desarrolla el análisis de eje hidráulico para la situación natural de los cauces en estudio.

De acuerdo con el modelo hidráulico utilizado y las consideraciones tomadas, se obtienen los resultados mostrados en las Tablas 3.3, 3.4 y 3.5 para los sectores La Moralina, Los Rulos y La Isla, respectivamente. Se destacan las filas que representan los perfiles transversales donde se ubicarán los gaviones de contención proyectados.

Tabla 3.3. Resultados eje hidráulico situación sin proyecto, T= 200 años, Q= 81.4 [m³/s], sector La Moralina

PT	Z Min	Z E.H	Z Crit	Energía	J	V	Ω	L	Fr	H.W
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
0,000	654,25	658,15	656,06	658,19	0,0004	0.94	110,63	52,90	0,17	3,90
-0,020	655,94	657,64	657,64	658,12	0,0180	3.10	27,50	32,41	0,97	1,70
-0,040	654,14	656,09	656,09	656,57	0,0213	3.34	29,87	31,21	1,05	1,95
-0,060	652,09	654,67	654,08	654,94	0,0049	2.34	36,67	24,64	0,55	2,58
-0,080	652,01	654,59	653,92	654,85	0,0040	2,29	40,67	28,08	0,51	2,58
-0,100	652,10	654,61	653,84	654,75	0,0026	1,66	55,34	44,03	0,40	2,51
-0,120	652,32	654,59	653,74	654,69	0,0019	1,50	68,15	46,25	0,35	2,27
-0,140	652,03	654,05	654,05	654,56	0,0170	3,25	27,93	29,15	0,96	2,02
-0,160	651,12	653,74	653,38	654,14	0,0075	2,81	31,43	23,23	0,68	2,62
-0,180	651,16	653,28	653,28	653,89	0,0184	3,46	23,66	20,31	1,00	2,12
-0,200	650,71	653,02	652,47	653,31	0,0052	2,43	35,86	23,75	0,57	2,31
-0,220	650,76	652,74	652,53	653,16	0,0107	2,90	29,93	24,46	0,78	1,98
-0,240	650,39	652,42	652,36	652,90	0,0150	3,07	27,53	28,52	0,90	2,03
-0,260	649,85	652,29	651,98	652,62	0,0093	2,53	32,14	25,50	0,72	2,44
-0,280	649,49	652,15	651,60	652,46	0,0065	2,47	32,99	20,33	0,62	2,66
-0,300	649,19	652,08	651,39	652,33	0,0050	2,24	36,40	21,55	0,54	2,89
-0,320	648,82	651,44	651,44	652,12	0,0187	3,63	22,42	17,21	1,01	2,62
-0,340	648,69	651,04	651,04	651,63	0,0184	3,40	24,04	21,18	1,00	2,35
-0,360	648,52	650,83	650,56	651,20	0,0086	2,71	32,38	27,04	0,71	2,31
-0,380	648,12	650,77	650,22	651,03	0,0056	2,27	36,00	24,73	0,58	2,65
-0,400	647,94	650,42	650,22	650,86	0,0113	2,92	28,16	22,14	0,80	2,48
-0,420	647,77	650,26	649,89	650,65	0,0081	2,78	30,22	21,15	0,69	2,49
-0,440	647,77	650,15	649,76	650,47	0,0082	2,52	32,36	23,30	0,68	2,38
-0,460	647,56	649,71	649,65	650,23	0,0164	3,17	25,64	21,98	0,94	2,15
-0,480	647,40	649,72	649,21	649,96	0,0058	2,20	37,27	27,16	0,58	2,32
-0,500	647,38	649,56	649,12	649,84	0,0067	2,33	35,12	26,03	0,62	2,18
-0,520	647,29	649,33	649,03	649,67	0,0092	2,60	31,31	24,04	0,72	2,04
-0,540	647,08	649,22	648,80	649,50	0,0062	2,35	35,91	27,87	0,61	2,14
-0,560	646,69	649,18	648,47	649,39	0,0034	2,11	45,78	32,04	0,47	2,49
-0,580	646,12	648,54	648,54	649,21	0,0189	3,62	22,46	17,09	1,01	2,42
-0,600	645,78	647,89	647,64	648,33	0,0110	2,93	27,74	19,63	0,79	2,11
-0,620	645,95	647,62	647,58	648,08	0,0151	3,03	29,11	31,03	0,90	1,67
-0,640	645,68	647,52	647,25	647,82	0,0075	2,45	37,29	38,54	0,66	1,84
-0,660	645,54	647,14	647,07	647,60	0,0145	3,04	28,12	28,96	0,90	1,60
-0,680	645,41	646,97	646,80	647,32	0,0107	2,63	32,56	33,41	0,77	1,56
-0,700	644,86	646,57	646,50	647,05	0,0150	3,07	26,82	25,04	0,91	1,71
-0,720	644,03	646,58	645,98	646,82	0,0049	2,22	37,49	24,95	0,55	2,55
-0,740	644,32	646,08	646,08	646,62	0,0189	3,28	24,87	23,13	1,00	1,76

Continuación Tabla 3.3

PT	Z Min	Z E.H	Z Crit	Energía	J	v	Ω	L	Fr	H.W
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
-0,760	643,57	646,08	645,52	646,36	0,0051	2,38	36,33	23,77	0,56	2,51
-0,780	643,42	645,54	645,51	646,16	0,0159	3,51	23,86	19,53	0,95	2,12
-0,800	643,37	645,32	645,23	645,82	0,0145	3,11	26,22	21,92	0,89	1,95
-0,820	642,85	645,28	644,84	645,58	0,0062	2,44	34,78	25,32	0,61	2,43
-0,840	642,67	645,22	644,60	645,45	0,0043	2,15	39,82	26,83	0,52	2,55
-0,860	642,75	645,04	644,61	645,35	0,0061	2,47	35,44	26,78	0,61	2,29
-0,880	642,29	644,91	644,46	645,22	0,0064	2,47	33,59	23,54	0,62	2,62
-0,900	642,15	644,57	644,37	645,04	0,0113	3,02	27,48	20,88	0,81	2,42
-0,920	641,82	644,50	644,04	644,82	0,0070	2,51	32,71	21,87	0,64	2,68
-0,940	641,53	644,30	643,84	644,67	0,0074	2,71	30,54	19,25	0,66	2,77
-0,960	641,10	644,35	643,32	644,53	0,0025	1,89	45,39	24,72	0,40	3,25
-0,980	640,96	644,32	643,13	644,48	0,0021	1,82	46,79	24,06	0,38	3,36
-1,000	641,35	644,19	643,24	644,42	0,0039	2,13	38,15	19,10	0,48	2,84
-1,020	641,13	643,76	643,55	644,27	0,0100	3,21	27,73	21,45	0,78	2,63

Nota: Se ha destacado con color azul, la ubicación de los muros de intercepción del flujo superficial. Km 0,200, Muro N° 1; Km. 0,420, Muro N° 2; Km. 0,940, Muro N° 3.

Tabla 3.4. Resultados eje hidráulico situación sin proyecto, T= 200 años, $Q = 33.5 \text{ [m}^3/\text{s]}$, sector Los Rulos

PT	Z Min	Z E.H	Z Crit	Energía	J	v	Ω	L	Fr	H.W
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
0,000	878,69	880,09	879,79	880,24	0,01	1,69	19,82	24,09	0,59	1,40
-0,020	878,36	879,91	879,61	880,06	0,01	1,74	20,40	33,72	0,60	1,55
-0,040	878,34	879,57	879,45	879,82	0,02	2,23	15,05	19,31	0,81	1,23
-0,060	878,05	879,10	879,10	879,40	0,03	2,45	13,66	22,89	1,00	1,05
-0,080	877,28	878,74	878,56	878,92	0,01	1,88	18,66	29,11	0,67	1,46
-0,100	876,94	878,26	878,26	878,58	0,02	2,56	13,89	25,23	0,98	1,32
-0,120	876,47	877,85	877,71	878,06	0,02	2,04	16,44	22,94	0,77	1,38
-0,140	875,79	877,37	877,37	877,70	0,02	2,58	14,31	25,82	0,90	1,58
-0,160	875,54	877,03	877,03	877,28	0,02	2,39	18,99	40,96	0,82	1,49
-0,180	875,16	876,50	876,50	876,79	0,02	2,53	15,77	29,36	0,92	1,34
-0,200	874,24	875,59	875,59	876,00	0,03	2,82	11,88	14,66	1,00	1,35
-0,220	873,90	875,09	874,97	875,30	0,02	2,04	16,42	23,55	0,78	1,19
-0,240	873,96	874,66	874,64	874,91	0,02	2,23	15,05	26,71	0,95	0,70
-0,260	873,18	874,14	874,14	874,36	0,03	2,10	16,05	36,26	1,00	0,96

Continuación Tabla 3.4

-0,280	872,76	873,77	873,66	873,90	0,01	1,63	21,12	41,81	0,71	1,01
-0,300	871,62	873,17	873,17	873,50	0,03	2,53	13,22	20,35	1,00	1,55
-0,320	871,31	872,40	872,40	872,69	0,03	2,40	13,94	23,59	1,00	1,09
-0,340	870,83	871,91	871,76	872,08	0,01	1,84	18,70	28,70	0,70	1,08
-0,360	869,86	871,33	871,31	871,73	0,02	2,80	11,98	14,08	0,97	1,47
-0,380	869,70	870,86	870,86	871,23	0,03	2,69	12,47	17,19	1,01	1,16
-0,400	868,88	870,14	869,94	870,34	0,01	2,01	17,04	21,94	0,69	1,26
-0,420	868,67	869,90	869,75	870,09	0,01	1,95	17,29	25,10	0,73	1,23
-0,440	868,41	869,40	869,38	869,72	0,02	2,51	13,47	20,77	0,97	0,99
-0,460	867,84	869,19	868,95	869,37	0,01	1,89	17,76	21,96	0,66	1,35
-0,480	867,67	868,70	868,70	869,03	0,03	2,55	13,13	20,45	1,01	1,03
-0,500	867,12	868,20	868,15	868,47	0,02	2,30	14,60	22,26	0,90	1,08
-0,520	866,40	867,63	867,63	867,99	0,03	2,66	12,61	17,54	1,00	1,23
-0,540	865,94	867,10	867,10	867,44	0,02	2,61	13,28	21,47	0,98	1,16
-0,560	865,46	866,73	866,61	866,98	0,01	2,22	15,42	21,72	0,78	1,27
-0,580	865,04	866,28	866,26	866,60	0,02	2,52	13,48	20,90	0,97	1,24

Nota: Se ha destacado con color azul, la ubicación de los muros de intercepción del flujo superficial. Km 0,260, Muro N° 1; Km. 0,340, Muro N° 2; Km. 0,460, Muro N° 3.

Tabla 3.5. Resultados eje hidráulico situación sin proyecto, T= 200 años, Q= 5.6 [m³/s], sector La Isla

PT	Z Min	Z E.H	Z Crit	Energía	J	v	Ω	L	Fr	H.W.
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
0,000	403,89	404,28	404,28	404,38	0,02	1,40	4,00	20,64	1,01	0,39
-0,020	401,16	401,73	401,73	401,88	0,02	1,71	3,28	11,40	1,02	0,57
-0,040	398,06	398,65	398,65	398,81	0,02	1,75	3,21	10,39	1,00	0,59
-0,060	397,74	398,34	398,02	398,35	0,00	0,52	1,.80	22,76	0,24	0,60
-0,080	397,58	398,13	398,13	398,29	0,02	1,79	3,13	9.,2	1,01	0,55
-0,100	396,69	396,94	396,94	397,03	0,02	1,36	4,11	22,22	1,01	0,25
-0,110	396,25	396,55	396,55	396,65	0,02	1,42	3,96	19,09	0,99	0,30
-0,120	395,96	396,35	396,35	396,47	0,02	1,57	3,57	14,13	0,99	0,39
-0,140	395,47	396,00	396,00	396,14	0,02	1,65	3,39	11,92	0,99	0,53
-0,160	394,91	395,74	395,31	395,76	0,00	0,59	9,42	15,62	0,24	0,83
-0,180	394,72	395,50	395,50	395,70	0,01	2,00	2,80	6.,8	1,01	0,78
-0,200	394,15	394,94	394,94	395,14	0,01	2,00	2,80	7.,9	1,01	0,79
-0,215	393,70	394,08	394,08	394,16	0,02	1,26	4,44	27,40	1,00	0,38
-0,220	393,59	393,91	393,91	393,92	0,00	0,51	1,.97	56,22	0,37	0,32
-0,240	393,11	393,52	393,52	393,62	0,02	1,40	3,99	19,67	0,99	0,41

Continuación Tabla 3.5

PT	Z Min	Z E.H	Z Crit	Energía	J	v	?	L	Fr	H.W.
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
-0,260	392,64	393,03	393,03	393,11	0,02	1,30	4,30	24,28	0,99	0,39
-0,280	392,09	392,76	392,39	392,76	0,00	0,30	1,.66	61,27	0,17	0,67
-0,300	392,12	392,57	392,57	392,72	0,01	1,75	3,21	10,10	0,99	0,45
-0,320	391,29	391,88	391,58	391,90	0,00	0,46	1,13	27,29	0,22	0,59
-0,340	390,93	391,66	391,66	391,84	0,01	1,89	2,97	8,07	0,99	0,73
-0,360	390,40	390,73	390,73	390,83	0,02	1,36	4,11	20,80	0,98	0,33
-0,380	389,79	390,16	390,16	390,26	0,02	1,42	3,94	19,73	1,01	0,37
-0,400	389,33	389,80	389,80	389,89	0,02	1,30	4,30	24,22	0,99	0,47
-0,420	389,15	389,37	389,37	389,45	0,02	1,20	4,68	32,46	1,01	0,22
-0,440	388,35	388,79	388,79	388,89	0,02	1,36	4,13	22,09	1,00	0,44
-0,460	387,91	388,37	388,37	388,47	0,02	1,45	3,86	18,18	1,00	0,46
-0,480	387,45	387,76	387,76	387,81	0,02	1,03	5,48	48,16	0,97	0,31

Nota: Se ha destacado con color azul, la ubicación de los muros de intercepción del flujo superficial. Km 0,140, Muro N° 1; Km. 0,200, Muro N° 2; Km. 0,260, Muro N° 3.

Fuente: Elaboración Propia Jorge Romero Navea – software HEC-RAS

Donde, para las 3 tablas anteriores:

PT : Perfil transversal
Z Min : Cota mínima del cauce
Z E.H : Cota eje hidráulico

Z Crit : Cota crítica de escurrimiento.

Energía : Línea de energía J : Pérdida unitaria

V : Velocidad media de escurrimientoE : Área sección de escurrimiento.

L : Ancho superficial
Fr : Número de Froude
Hw : Altura de escurrimiento.

En las Figuras 3.1, 3.2 y 3.3 se esquematizan los ejes hidráulicos determinados según las condiciones de diseño para los sectores La Moralina, Los Rulos y La Isla, respectivamente.

Complementariamente, en el Anexo II.1 del presente Informe, se muestra el replanteo con el nivel del eje hidráulico calculado para la totalidad de los perfiles transversales utilizados en cada sector de estudio.

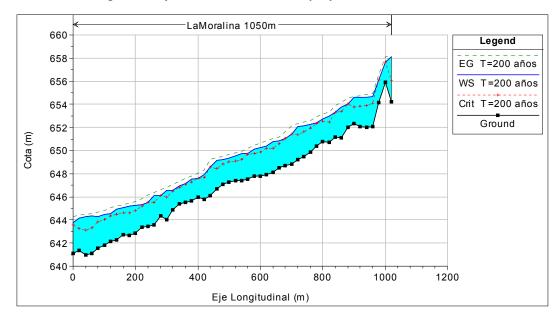


Figura 3.1. Eje hidráulico situación sin proyecto, sector La Moralina

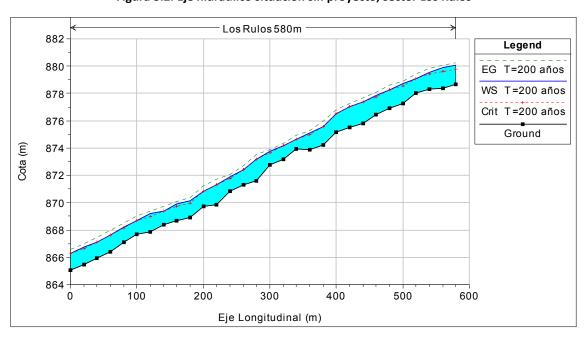


Figura 3.2. Eje hidráulico situación sin proyecto, sector Los Rulos

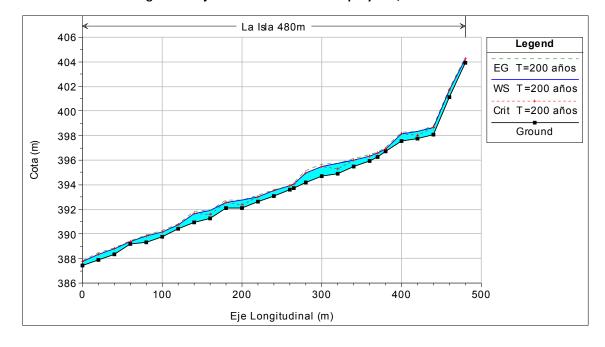


Figura 3.3. Eje hidráulico situación sin proyecto, sector La Isla

3.5 Análisis Situación Con Proyecto

Generalidades

La solución propuesta en el estudio de cosecha de aguas lluvias busca aumentar la función de reserva de un acuífero natural, al imponer un muro de intercepción superficial que permita una mayor infiltración en el suelo y una barrera impermeable subterránea que dificulte el movimiento de las aguas subterráneas bajo la acción de sus gradientes hidráulicos, aumentando la disponibilidad hídrica del subsuelo al rellenar el volumen de sus poros.

Las obras proyectadas consisten en gaviones de malla metálica, de forma rectangular, rellenos de material granular y de altura variable según el cauce de estudio. Estos muros presentan una elevada resistencia, son flexibles y soportan movimientos diferenciales sin pérdida de eficiencia. Además, su construcción es simple y económica y su uso ha presentado excelentes resultados en la contención de suelos y obras fluviales.

Las condiciones topográficas de los cauces de estudio y los caudales de diseño asociados, permiten definir la ubicación de los gaviones en el cauce y determinar su geometría y dimensiones. Se debe tener en cuenta que éste tipo de obras requiere una correcta fabricación y amarre de la malla utilizada, y que el fondo de los cauces inmediatamente aguas arriba y aguas abajo de los gaviones proyectados debe ser protegido mediante un empedrado, para evitar asentamientos en los sectores de emplazamiento.

Por su parte, las barreras impermeables subterráneas, consistentes en pantallas de geotextil impermeable, deben quedar protegidas del punzonamiento que podrían recibir por parte del material granular de los gaviones respectivos.

En este acápite se desarrolla el análisis de escorrentía superficial para la situación con muros de intercepción proyectados.

Consideraciones hidráulicas

Tal como se mencionó en el capítulo 3.1, los gaviones de contención proyectados, además de estar asociados a la retención de volúmenes de escorrentía que favorezcan su infiltración en el suelo, deben cumplir con un diseño eficiente tal que permitan evacuar las crecidas de diseño (T= 200 años).

Utilizando el sistema métrico, el caudal unitario sobre el umbral (o cresta) del vertedero queda determinado por la siguiente ecuación¹:

$$q = 1.704*(H1-P)^{\frac{3}{2}}$$
 (Ec. 4)

Donde: q : Caudal unitario sobre el vertedero (m3/s/m)

H1 : Bernoulli aguas arriba del vertedero (m)

P : Altura del vertedero (m)

Sin embargo, la Ec. 4 es válida en condiciones ideales y sin considerar las pérdidas de carga que se producen en el escurrimiento sobre el umbral. Para considerar estos efectos, la Ec. 4 debe incluir el coeficiente de gasto C₀, es decir:

$$q = C_Q *1.704*(H1-P)^{\frac{3}{2}}$$
 (Ec. 5)

El coeficiente de gasto C_Q es dependiente de la altura del vertedero, del largo de la cresta y de la forma de la arista de entrada al umbral. Para determinar este coeficiente se ha utilizado la ecuación propuesta por Hager y Schwalt (1994) para el caso de arista viva, deducida a base de experiencias en laboratorio y según la cual:

$$C_{Q} = 0.85 * \frac{9}{7} * (1 - \frac{\frac{2}{9}}{(1 + \frac{H1 - P}{Lcresta})^{4}})$$
 (Ec. 6)

Donde: Lcresta: Longitud de la cresta del vertedero (m)

El programa HEC-RAS determina el caudal vertido usando la ecuación estándar de vertederos, según la cual:

$$Q = C * L * H^{\frac{3}{2}}$$
 (Ec. 7)

Donde: Q : Caudal de diseño (m³/s)

¹ Mery, Horacio, "Hidráulica Aplicada al Diseño de Obras", 1971, Parte II.

C : Coeficiente de gasto del vertedero

L : Longitud del vertedero transversal al flujo (m)

H : Carga sobre el vertedero (m)

Entonces, para realizar una correcta simulación de la condición de evacuación de crecidas de diseño en los gaviones proyectados, se ha realizado una analogía entre la ecuación estándar para determinar el caudal sobre el vertedero que utiliza el programa HEC-RAS y las ecuaciones Ec. 5 y Ec. 6, con la finalidad de determinar el valor del coeficiente del vertedero C que debe ser ingresado por el usuario en el programa.

Luego, la analogía se define al establecer las siguientes relaciones:

$$\frac{Q}{L} = q$$
 (Ec. 8)
$$H = (H1 - P)$$
 (Ec. 9)
$$C = 1.704 * C_Q$$
 (Ec. 10)

En cuanto a la condición de diseño de evacuación de crecidas, un vertedero de pared gruesa de cresta plana y horizontal debe cumplir con la siguiente relación entre longitud y carga sobre la cresta²:

$$\frac{Lcresta}{H1-P} \ge 1.5 a 3 \tag{Ec. 11}$$

Así, en un proceso iterativo, se han definido las alturas de vertederos (P), el Bernoulii aguas arriba del vertedero (H1) y el coeficiente de gasto C_Q , buscando en todo momento que cumplan la ecuación de relación entre longitud (Lcresta) y carga sobre de la cresta del vertedero (Ec. 11). En la Tabla 3.6 se presentan los coeficientes de gasto del vertedero C definidos para la simulación con el programa HEC-RAS.

Tabla 3.6. Determinación coeficiente de gasto C

SECTOR	Lcresta	Р	С
	[m]	[m]	[adoptado]
La Moralina	3	3	1.496
Los Rulos	2	2	1.477
La Isla	1	1	1.477

Fuente: Elaboración Propia Jorge Romero Navea

Por su parte, la cresta del vertedero debe ser capaz de resistir los esfuerzos provocados por la presión de las aguas (que pueden contener sedimentos), para lo cual se establece que, al menos, cumpla con la condición de no deslizamiento, dada por la siguiente ecuación³:

³ FAO Oficina Regional para América Latina y el Caribe, "Generación de Tecnologías Adecuadas al Desarrollo Rural", 1988.

² Mery, Horacio, "Hidráulica Aplicada al Diseño de Obras", 1971, Il Parte.

$$Lcresta \ge \frac{\gamma}{2 * \varphi * \gamma_s}$$
 (Ec. 12)

Donde: γ : Peso específico del agua con sedimentos (ton/m³)

γ_s : Peso específico del gavión (ton/m3)

 $\boldsymbol{\phi}$: Coeficiente de rozamiento de piedra sobre piedra.

Por lo general, se considera γ = 1.2 ton/m³, γ_s = 1.8 ton/m³ y ϕ = 0.6, por lo que la longitud mínima de la cresta del gavión debe ser de 0.60 m. En forma conservadora, se adoptaron longitudes de cresta mayores a 1 m.

Resultados situación con proyecto

A continuación se desarrolla el análisis hidráulico superficial para la situación con gaviones proyectados en los diferentes cauces de interés.

De acuerdo con el modelo hidráulico utilizado y las consideraciones tomadas, se obtienen los resultados mostrados en las Tablas 3.7, 3.8 y 3.9 para los sectores La Moralina, Los Rulos y La Isla, respectivamente.

Tabla 3.7. Resultados eje hidráulico situación con proyecto, T= 200 años, Q= 81.4 [m3/s], sector La Moralina

PT	Z Min	Z E.H	Z Crit	Energía	J	v	Ω	L	Fr	H.W.
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
0,000	654,25	658,15	656,06	658,19	0,0004	0,94	110,63	52,90	0,17	3,90
-0,020	655,94	657,64	657,64	658,12	0,0180	3,10	27,50	32,41	0,97	1,70
-0,040	654,14	656,09	656,09	656,57	0,0213	3,34	29,87	31,21	1,05	1,95
-0,060	652,09	655,41	654,08	655,54	0,0015	1,61	57,55	32,33	0,32	3,32
-0,080	652,01	655,40	653,92	655,51	0,0012	1,55	66,15	35,41	0,29	3,39
-0,100	652,10	655,42	653,84	655,47	0,0006	1,06	95,94	53,73	0,21	3,32
-0,120	652,32	655,42	653,74	655,46	0,0005	0,98	109,01	52,42	0,19	3,10
-0,140	652,03	655,35	654,05	655,44	0,0012	1,38	74,34	42,57	0,28	3,32
-0,160	651,12	655,34	653,38	655,42	0,0007	1,32	79,96	36,74	0,23	4,22
-0,180	651,16	655,34	653,28	655,40	0,0006	1,19	80,68	35,19	0,21	4,18
-0,200	650,71	655,35	652,47	655,39	0,0003	0,97	105,77	36,22	0,15	4,64
-0,201										
-0,220	650,76	652,80	652,53	653,18	0,0093	2,78	31,32	24,85	0,74	2,04
-0,240	650,39	652,68	652,36	652,99	0,0075	2,48	35,48	31,63	0,66	2,29
-0,260	649,85	652,65	651,97	652,85	0,0042	1,96	41,79	28,20	0,50	2,80
-0,280	649,49	652,58	651,60	652,78	0,0030	1,94	42,32	22,59	0,43	3,09
-0,300	649,19	652,56	651,39	652,71	0,0022	1,74	47,48	24,21	0,37	3,37
-0,320	648,82	652,47	651,44	652,66	0,0026	1,96	45,29	25,21	0,41	3,65

Tabla 3.7 (Continuación)

PT	Z Min	Z E.H	Z Crit	Energía	J	V	?	L	Fr	H.W.
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
-0,340	648,69	652,50	651,04	652,60	0,0012	1,46	62,96	32,59	0,29	3,81
-0,360	648,52	652,51	650,56	652,57	0,0006	1,15	89,20	40,71	0,21	3,99
-0,380	648,12	652,51	650,22	652,56	0,0004	1,02	92,24	39,64	0,18	4,39
-0,400	647,94	652,50	650,22	652,55	0,0004	1,07	90,73	38,11	0,18	4,56
-0,420	647,77	652,49	649,89	652,54	0,0004	1,07	95,50	37,30	0,17	4,72
-0,421										
-0,440	647,77	650,15	649,76	650,47	0,0082	2,52	32,36	23,30	0,68	2,38
-0,460	647,56	649,71	649,65	650,23	0,0164	3,17	25,65	21,98	0,94	2,15
-0,480	647,40	649,72	649,21	649,96	0,0058	2,20	37,26	27,16	0,58	2,32
-0,500	647,38	649,56	649,12	649,84	0,0067	2,33	35,11	26,03	0,62	2,18
-0,520	647,29	649,33	649,03	649,67	0,0092	2,60	31,31	24,04	0,72	2,04
-0,540	647,08	649,22	648,80	649,50	0,0062	2,35	35,92	27,87	0,61	2,14
-0,560	646,69	649,18	648,47	649,39	0,0034	2,11	45,78	32,04	0,47	2,49
-0,580	646,12	648,54	648,54	649,21	0,0189	3,62	22,46	17,09	1,01	2,42
-0,600	645,78	647,89	647,64	648,33	0,0110	2,94	27,73	19,62	0,79	2,11
-0,620	645,95	647,62	647,58	648,08	0,0150	3,02	29,13	31,03	0,90	1,67
-0,640	645,68	647,53	647,25	647,82	0,0075	2,45	37,33	38,56	0,66	1,85
-0,660	645,54	647,13	647,07	647,60	0,0147	3,05	27,99	28,92	0,90	1,59
-0,680	645,41	646,95	646,80	647,31	0,0113	2,68	31,88	33,14	0,79	1,54
-0,700	644,86	646,69	646,50	647,09	0,0108	2,78	29,87	26,05	0,78	1,83
-0,720	644,03	646,69	645,98	646,91	0,0039	2,07	40,50	25,81	0,49	2,66
-0,740	644,32	646,55	646,08	646,81	0,0056	2,26	36,69	26,39	0,58	2,23
-0,760	643,57	646,55	645,52	646,72	0,0023	1,86	48,11	26,19	0,39	2,98
-0,780	643,42	646,46	645,51	646,66	0,0027	2,04	44,31	24,79	0,43	3,04
-0,800	643,37	646,48	645,23	646,60	0,0016	1,52	56,79	30,77	0,32	3,11
-0,820	642,85	646,48	644,84	646,57	0,0009	1,33	70,67	34,61	0,25	3,63
-0,840	642,67	646,48	644,60	646,55	0,0006	1,20	79,22	36,01	0,22	3,81
-0,860	642,75	646,46	644,61	646,53	0,0007	1,23	81,89	38,31	0,22	3,71
-0,880	642,29	646,45	644,46	646,52	0,0006	1,20	78,41	34,70	0,22	4,16
-0,900	642,15	646,43	644,37	646,51	0,0006	1,23	78,11	33,55	0,22	4,28
-0,920	641,82	646,44	644,05	646,49	0,0004	1,02	87,21	35,01	0,18	4,62
-0,940	641,53	646,42	643,84	646,48	0,0004	1,14	82,74	31,19	0,19	4,89
-0,941										
-0,960	641,10	644,35	643,32	644,53	0,0025	1,89	45,39	24,72	0,40	3,25
-0,980	640,96	644,32	643,13	644,48	0,0021	1,82	46,79	24,06	0,38	3,36
-1,000	641,35	644,19	643,24	644,42	0,0039	2,13	38,15	19,10	0,48	2,84
-1,020	641,13	643,76	643,55	644,27	0,0100	3,21	27,73	21,45	0,78	2,63

Nota: Se ha destacado con color verde, la ubicación de los muros de intercepción del flujo superficial. Km 0,200, Muro N° 1; Km. 0,420, Muro N° 2; Km. 0,940, Muro N° 3.

Tabla 3.8. Resultados eje hidráulico situación con proyecto, T= 200 años, Q= 33.5 [m3/s], sector Los Rulos

PT	Z Min	Z E.H	Z Crit	Energía	J	v	Ω	L	Fr	H.W.
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
0,000	878,69	880,09	879,79	880,24	0,0086	1,69	19,82	24,09	0,59	1,40
-0,020	878,36	879,91	879,61	880,06	0,0087	1,74	20,40	33,72	0,60	1,55
-0,040	878,34	879,57	879,45	879,82	0,0162	2,23	15,05	19,31	0,81	1,23
-0,060	878,05	879,10	879,10	879,40	0,0271	2,45	13,66	22,89	1,00	1,05
-0,080	877,28	878,74	878,56	878,92	0,0113	1,88	18,66	29,11	0,67	1,46
-0,100	876,94	878,26	878,26	878,58	0,0246	2,56	13,89	25,23	0,98	1,32
-0,120	876,47	877,85	877,71	878,06	0,0151	2,04	16,44	22,94	0,77	1,38
-0,140	875,79	877,37	877,37	877,70	0,0204	2,58	14,31	25,82	0,90	1,58
-0,160	875,54	877,03	877,03	877,28	0,0168	2,39	18,99	40,96	0,82	1,49
-0,180	875,16	876,50	876,50	876,79	0,0215	2,53	15,77	29,36	0,92	1,34
-0,200	874,24	876,06	875,59	876,21	0,0063	1,71	19,58	18,18	0,53	1,82
-0,220	873,90	876,11	874,97	876,14	0,0008	0,76	44,92	32,84	0,20	2,21
-0,240	873,96	876,11	874,64	876,12	0,0003	0,55	66,15	44,34	0,13	2,15
-0,260	873,18	876,11	874,14	876,12	0,0001	0,35	105,80	54,18	0,07	2,93
-0,261										
-0,280	872,76	873,93	873,66	874,00	0,0058	1,24	27,93	43,29	0,48	1,17
-0,300	871,62	873,90	873,17	873,94	0,0016	0,87	43,73	44,53	0,27	2,28
-0,320	871,31	873,91	872,40	873,92	0,0002	0,49	78,05	45,93	0,11	2,60
-0,340	870,83	873,91	871,76	873,92	0,0001	0,43	93,08	45,16	0,08	3,08
-0,341										
-0,360	869,86	871,33	871,31	871,73	0,0231	2,80	11,98	14,08	0,97	1,47
-0,380	869,70	870,86	870,86	871,23	0,0259	2,69	12,47	17,19	1,01	1,16
-0,400	868,88	870,93	869,94	870,97	0,0013	0,97	37,74	30,70	0,25	2,05
-0,420	868,67	870,92	869,75	870,95	0,0007	0,74	48,32	35,52	0,19	2,25
-0,440	868,41	870,91	869,38	870,94	0,0004	0,68	59,29	40,78	0,15	2,50
-0,460	867,84	870,92	868,95	870,93	0,0002	0,53	80,26	48,71	0,10	3,08
-0,461										
-0,480	867,67	868,70	868,70	869,03	0,0268	2,55	13,13	20,45	1,01	1,03
-0,500	867,12	868,20	868,15	868,47	0,0214	2,30	14,60	22,26	0,90	1,08
-0,520	866,40	867,63	867,63	867,99	0,0259	2,66	12,61	17,54	1,00	1,23
-0,540	865,94	867,10	867,10	867,44	0,0242	2,61	13,28	21,47	0,98	1,16
-0,560	865,46	866,73	866,61	866,98	0,0150	2,22	15,42	21,72	0,78	1,27
-0,580	865,04	866,28	866,26	866,60	0,0240	2,52	13,48	20,90	0,97	1,24

Nota: Se ha destacado con color azul, la ubicación de los muros de intercepción del flujo superficial. Km 0,260, Muro N° 1; Km. 0,340, Muro N° 2; Km. 0,460, Muro N° 3.

Tabla 3.9. Resultados eje hidráulico situación con proyecto, T= 200 años, Q= 5.6 [m3/s], sector La Isla

PT	Z Min	Z E.H	Z Crit	Energía	J	v	Ω	L	Fr	H.W.
	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)		(m)
0,000	403,89	404,28	404,28	404,38	0,0179	1,40	4,00	20,64	1,01	0,39
-0,020	401,16	401,73	401,73	401,88	0,0173	1,71	3,28	11,40	1,01	0,57
-0,020	398,06	398,65	398,65	398,81	0,0138	1,75	3,21	10,39	1,02	0,59
							10,80			
-0,060	397,74	398,34	398,02	398,35	0,0008	0,52	•	22,76	0,24	0,60
-0,080	397,58	398,13	398,13	398,29	0,0153	1,79	3,13	9,82	1,01	0,55
-0,100	396,69	396,94	396,94	397,03	0,0180	1,36	4,11	22,22	1,01	0,25
-0,110	396,25	396,87	396,55	396,88	0,0008	0,54	10,37	21,46	0,25	0,62
-0,120	395,96	396,86	396,35	396,88	0,0004	0,50	11,27	15,56	0,19	0,90
-0,140	395,47	396,87	396,00	396,87	0,0001	0,27	20,89	28,40	0,10	1,40
-0,141	204.04	205.05	205.24	205.07	0.0004	0.50	44.04	46.40	0.40	0.04
-0,160	394,91	395,85	395,31	395,87	0,0004	0,50	11,24	16,42	0,19	0,94
-0,180	394,72	395,78	395,49	395,84	0,0028	1,09	5,14	9,35	0,47	1,06
-0,200	394,15	395,80	394,94	395,81	0,0003	0,45	12,31	14,92	0,16	1,65
-0,201										
-0,215	393,70	394,08	394,08	394,16	0,0185	1,26	4,44	27,40	1,00	0,38
-0,220	393,59	393,97	393,91	393,98	0,0010	0,39	14,24	56,90	0,25	0,38
-0,240	393,11	393,97	393,52	393,97	0,0001	0,17	33,94	64,96	0,07	0,86
-0,260	392,64	393,97	393,03	393,97	0,0000	0,09	62,36	73,27	0,03	1,33
-0,261										
-0,280	392,09	392,76	392,39	392,76	0,0005	0,30	18,66	61,27	0,17	0,67
-0,300	392,12	392,57	392,57	392,72	0,0145	1,75	3,21	10,10	0,99	0,45
-0,320	391,29	391,88	391,58	391,90	0,0006	0,46	12,13	27,29	0,22	0,59
-0,340	390,93	391,66	391,66	391,84	0,0142	1,89	2,97	8,07	0,99	0,73
-0,360	390,40	390,73	390,73	390,83	0,0166	1,36	4,11	20,80	0,98	0,33
-0,380	389,79	390,16	390,16	390,26	0,0177	1,42	3,94	19,73	1,01	0,37
-0,400	389,33	389,80	389,80	389,89	0,0175	1,30	4,30	24,22	0,99	0,47
-0,420	389,15	389,37	389,37	389,45	0,0194	1,20	4,68	32,46	1,01	0,22
-0,440	388,35	388,79	388,79	388,89	0,0176	1,36	4,13	22,09	1,00	0,44
-0,460	387,91	388,37	388,37	388,47	0,0170	1,45	3,86	18,18	1,00	0,46
-0,480	387,45	387,76	387,76	387,81	0,0194	1,03	5,48	48,16	0,97	0,31

Nota: Se ha destacado con color azul, la ubicación de los muros de intercepción del flujo superficial. Km 0,140, Muro N° 1; Km. 0,200, Muro N° 2; Km. 0,260, Muro N° 3.

Donde, para las 3 tablas anteriores:

PT : Perfil transversal
Z Min : Cota mínima del cauce
Z E.H : Cota eje hidráulico

Z Crit : Cota crítica de escurrimiento.

Energía: Línea de energía

J : Pérdida unitaria

V : Velocidad media de escurrimientoE : Área sección de escurrimiento.

L : Ancho superficial
Fr : Número de Froude
Hw : Altura de escurrimiento.

De las Figuras 3.4 a 3.12 se esquematizan los ejes hidráulicos determinados en los perfiles transversales donde se emplazarán los gaviones de intercepción superficial para los sectores de estudio.

Complementariamente, en el Anexo II.2 del presente Informe, se muestra el replanteo con el nivel del eje hidráulico calculado en la situación con proyecto para la totalidad de los perfiles transversales utilizados en cada sector de estudio.

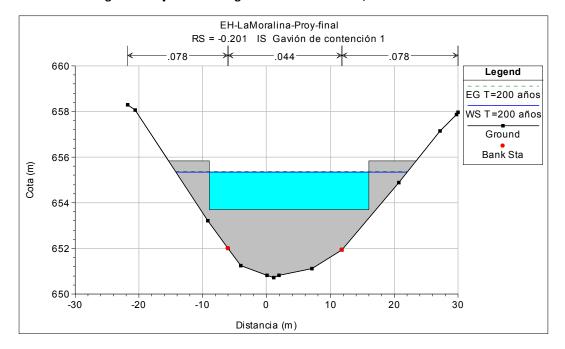


Figura 3.4. Eje hidráulico gavión de contención 1, sector La Moralina

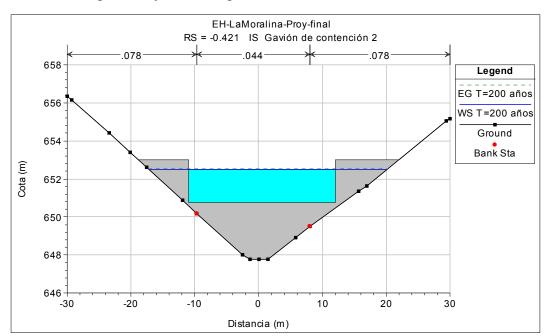


Figura 3.5. Eje hidráulico gavión de contención 2, sector La Moralina

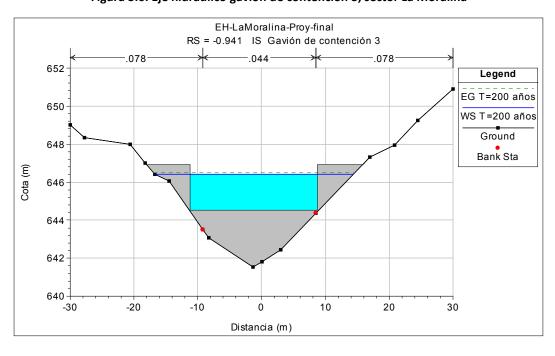


Figura 3.6. Eje hidráulico gavión de contención 3, sector La Moralina

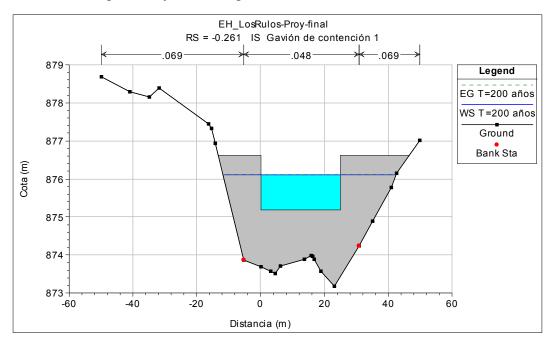


Figura 3.7. Eje hidráulico gavión de contención 1, sector Los Rulos

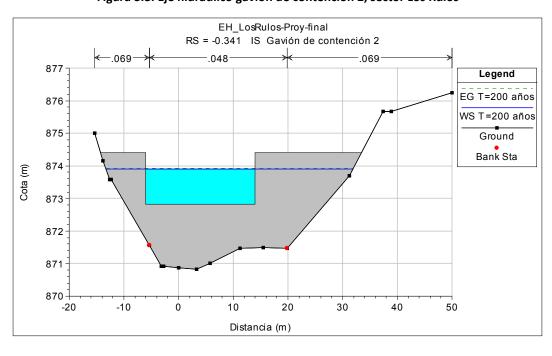


Figura 3.8. Eje hidráulico gavión de contención 2, sector Los Rulos

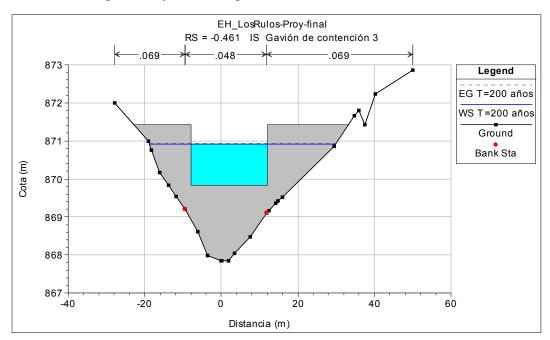


Figura 3.9. Eje hidráulico gavión de contención 3, sector Los Rulos

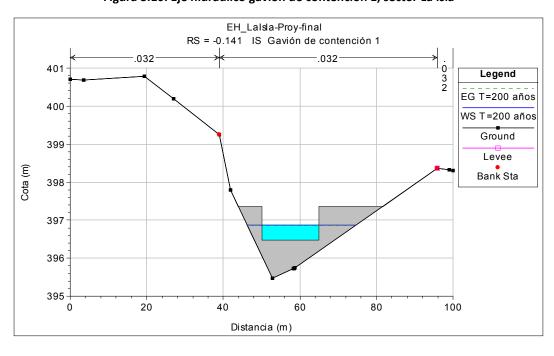


Figura 3.10. Eje hidráulico gavión de contención 1, sector La Isla

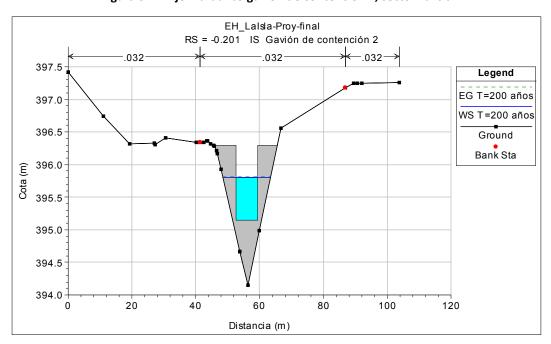


Figura 3.11. Eje hidráulico gavión de contención 2, sector La Isla

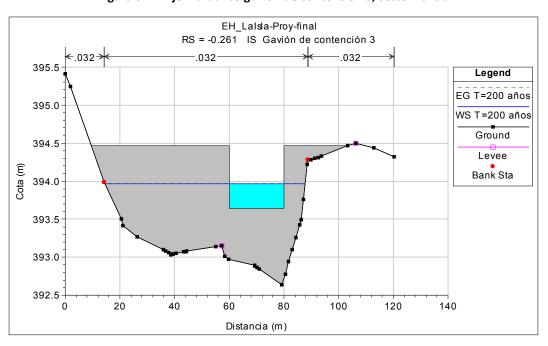


Figura 3.12. Eje hidráulico gavión de contención 3, sector La Isla

En las Figuras 3.13, 3.14 y 3.15 se esquematizan los ejes hidráulicos determinados según las condiciones de diseño para la situación con gaviones proyectados en los sectores La Moralina, Los Rulos y La Isla, respectivamente.

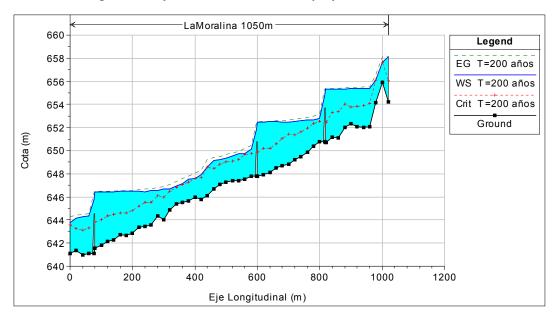


Figura 3.13. Eje hidráulico situación con proyecto, sector La Moralina

Fuente: Elaboración Propia Jorge Romero Navea – software HEC-RAS

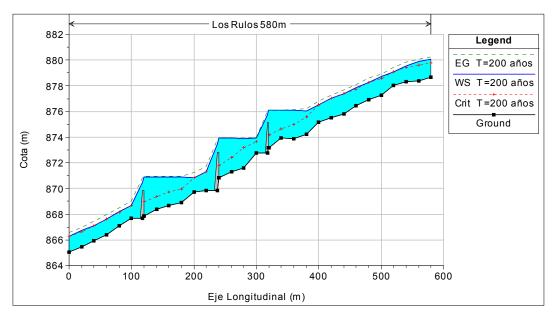


Figura 3.14. Eje hidráulico situación con proyecto, sector Los Rulos

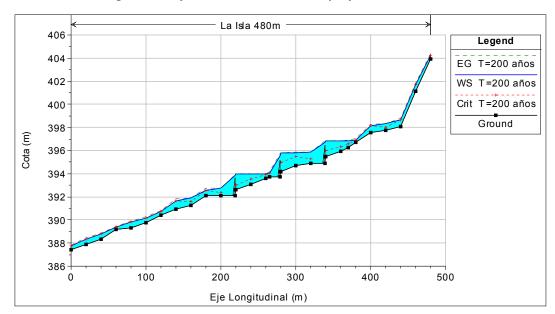


Figura 3.15. Eje hidráulico situación con proyecto, sector La Isla

Fuente: Elaboración Propia Romero e Hijo Ingeniería – software HEC-RAS

4. ESTUDIO DE MECÁNICA FLUVIAL

4.1 Generalidades

En este capítulo se determinan las socavaciones que ocurren en los lechos de los cauces de estudio producto del emplazamiento de los gaviones y sus obras anexas. El análisis se desarrolla para las crecidas de diseño de período de retorno T= 200 años, y se utilizan las metodologías de socavación propuestas por el Ministerio de Obras Públicas (MOP) en su Manual de Carreteras, Volumen 3, capítulo 3.707.4.

El análisis de mecánica fluvial se desarrolla para disminuir la erosión retrógrada y desestabilización del lecho en torno a los gaviones proyectados, permitiendo definir las cotas mínimas de instalación de las sábanas de protección aguas abajo de los gaviones, mediante análisis de socavación al pie de barreras vertedoras.

Dado que los gaviones proyectados actúan como muros de intercepción superficial, se establece que aguas arriba de los gaviones la velocidad de escurrimiento se reducirá y no podrá igualar ni superar la velocidad crítica de arrastre necesaria para alcanzar la condición hidráulica de transporte incipiente o crítico, por lo que no se generará socavación, sino por el contrario, podría desarrollar acumulación de sedimentos.

La mecánica de suelos desarrollada para este estudio, indica que los cauces de interés corresponden a suelos areno arcillosos y gravo arcillosos, según el sistema USCS, con granulometrías homogéneas y de plasticidad media a media alta, según los dispuesto en el acápite 2.4.

El análisis de mecánica de suelos se encuentra en el Anexo I del presente Informe.

4.2 Metodologías para Cálculo de la Socavación

Para estimar la socavación máxima al pie de una barrera vertedora de baja carga (tal como son las estructuras de gaviones proyectados), se recomienda utilizar la fórmula genérica siguiente⁴:

$$S + h_d = A * \frac{H^x * q^y}{D^z} * h_d^w$$
 (Ec.13)

Donde: S : Socavación máxima al pie del gavión (m)

h_d : Altura de escurrimiento aguas abajo de la socavación (m)

H : Diferencia entre el nivel de aguas arriba de la barrera y aguas abajo de la

corriente (m)

g : Caudal por unidad de ancho (m3/s/m).

D : Diámetro representativo del material del lecho según autor (mm)

A : Factor según autor x, y, z, w : Exponentes según autor

En la Figura 4.1 se presenta un esquema con las variables mencionadas.

⁴ MOP-DGOP-Dirección de Vialidad, "Manual de Carreteras", 1997, Volumen N°3.

27

q H H had

Figura 4.1. Esquema de definición de variables – socavación al pie

Fuente: MOP-DGOP-Dirección de Vialidad, "Manual de Carreteras", Volumen N°3, Figura 3.707.404.A

En la Tabla 4.1 se muestran los valores recomendados para la aplicación de la Ec. 13 según los autores Schoklitsch y Veronese.

Tabla 4.1. Parámetros de fórmula de socavación al pie

AUTOR	Α	х	У	Z	w
Schoklitsch	4,75	0,20	0,57	0,32	0,00
Veronese	3,68	0,225	0,54	0,42	0,00

Fuente: MOP-DGOP-Dirección de Vialidad, "Manual de Carreteras", Volumen N°3, Tabla 3.707.404.A

4.3 Longitud de la sábana de protección al pie

En este acápite se explica la metodología utilizada para determinar las características geométricas e hidráulicas de la lámina líquida que vierte por los gaviones proyectados para la condición de diseño de período de retorno T= 200 años.

Se utilizarán las relaciones exponenciales propuestas por W.Rand⁵ en 1985, quien determinó las principales características del chorro que cae de un escalón en un canal rectangular. Se estima que las relaciones propuestas tienen un margen de error no superior al 5%.

Las ecuaciones adimensionales exponenciales propuestas por Rand son las siguientes:

28

⁵ Rand, W. "Flow Geometry at Straight Drop Spillways", 1985

$$\frac{h1}{a} = 0.54 * (\frac{hc}{a})^{1.275}$$
 (Ec. 14)
$$\frac{h2}{a} = 1.66 * (\frac{hc}{a})^{0.81}$$
 (Ec. 15)
$$\frac{hp}{a} = (\frac{hc}{a})^{0.66}$$
 (Ec. 16)
$$\frac{L_d}{a} = 4.3 * (\frac{hc}{a})^{0.81}$$
 (Ec. 17)
$$L_R = 6.9 * (h2 - h1)$$
 (Ec. 18)

Donde: a : Altura vertical de caída (m)

h_c : Altura crítica en el gavión para el caudal que escurre (m)

h1 : Altura del torrente al pie de la zona de impacto (m)

h2 : Altura del régimen subcrítico de aguas abajo (m).

hp : Altura del nivel de agua junto al paramento vertical de la caída (m)

Ld : Longitud de la sábana de protección al pie (m)
L_R : Longitud del resalto hidráulico al pie de la caída (m)

En la Figura 4.2 se muestra un esquema con las variables mencionadas.

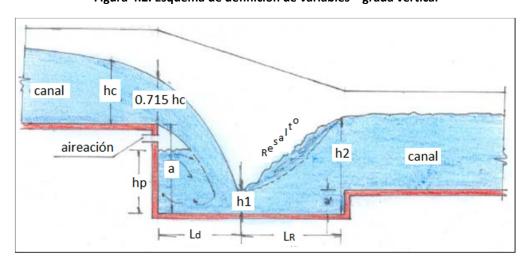


Figura 4.2. Esquema de definición de variables – grada vertical

Fuente: Mery, H. "Hidráulica Aplicada al Diseño de Obras", 1971, Parte II

4.4 Resultados

En las Tablas 4.2 a 4.7 se presentan los resultados del análisis de socavación desarrollado para los distintos cauces de interés. Se han utilizado la Ec. 13 y los parámetros de la Tabla 4.1 para determinar el espesor de la sábana de protección (D) tal que la socavación calculada según los distintos autores sea nula.

Tabla 4.2. Parámetros para cálculo de socavación, sector La Moralina

GAVIÓN	hd	Н	q
GAVION	[m]	[m]	[mm]
1	2,04	2,60	4,50
2	2,38	2,34	5,05
3	3,25	1,64	5,57

Fuente: Elaboración Propia Jorge Romero Navea

Tabla 4.3. Resultados espesor (D) necesario para socavación nula, sector La Moralina

AUTOR	GAVIÓN 1		GAVI	ÓN 2	GAVIÓN 3	
	D [mm]	S [m]	D [mm]	S [m]	D [mm]	S [m]
Schoklitsch	370	0,00	265	0,00	95	0,00
Veronese	47	0,00	36	0,00	16	0,00

Fuente: Elaboración Propia Romero e Hijo Ingeniería

Tabla 4.4. Parámetros para cálculo de socavación, sector Los Rulos

GAVIÓN	hd [m]	H [m]	q [mm]
1	1,17	1,76	1,03
2	1,47	1,61	1,32
3	1,03	2,05	1,63

Fuente: Elaboración Propia Jorge Romero Navea

Tabla 4.5. Resultados espesor (D) necesario para socavación nula, sector Los Rulos

AUTOR	GAVIÓN 1		GAVI	ÓN 2	GAVIÓN 3	
	D [mm]	S [m]	D [mm]	S [m]	D [mm]	S [m]
Schoklitsch	120	0,00	87	0,00	440	0,00
Veronese	22	0,00	17	0,00	57	0,00

Fuente: Elaboración Propia Jorge Romero Navea

Tabla 4.6. Parámetros para cálculo de socavación, sector La Isla

GAVIÓN	hd [m]	H [m]	q [mm]
1	0,94	0,46	0,38
2	0,60	1,27	0,74
3	0,67	0,66	0,12

Fuente: Elaboración Propia Jorge Romero Navea

Tabla 4.7. Resultados espesor (D) necesario para socavación nula, sector La Isla

AUTOR	GAVIÓN 1		GAVIÓN 2		GAVIÓN 3	
	D [mm]	S [m]	D [mm]	S [m]	D [mm]	S [m]
Schoklitsch	17	0,00	400	0,00	8	0,00
Veronese	5	0,00	170	0,00	3	0,00

Fuente: Elaboración Propia Jorge Romero Navea

De los resultados presentados en las Tablas 4.3, 4.5 y 4.7 se observa que la situación más desfavorable ocurre en el gavión 3 (PT 0.460) en el sector Los Rulos, donde se requiere una sábana de protección de espesor D= 44 cm. En forma conservadora, se propone que las sábanas de protección en base a gaviones tengan un espesor mínimo de 50 cm para todos los gaviones proyectados.

En las Tablas 4.8, 4.9 y 4.10 se presentan las características hidráulicas de vertido de los gaviones de intercepción proyectados, para la condición de diseño de período de retorno T=200 años, determinadas con las relaciones de Rand, para los sectores La Moralina, Los Rulos y La Isla, respectivamente. Se observa que la longitud horizontal equivalente al resalto hidráulico (L_R) debe ser protegida con enrocados a lo largo del cauce, con la finalidad de contribuir a la disipación de energía. Además, para protección local, se recomienda instalar bajo la sábana de protección (L_d) un geotextil impermeable, de manera de evitar la filtración de las aguas de vertido al suelo de fundación.

Tabla 4.8. Características hidráulicas de caída vertical, sector La Moralina

PARÁMETRO		Gavión 1	Gavión 2	Gavión 3
Q	[m3/s]	81,40	81,40	81,40
В	[m]	25,00	23,00	20,00
а	[m]	3,00	3,00	3,00
hc	[m]	1,03	1,08	1,19
h1	[m]	0,41	0,44	0,50
h2	[m]	2,09	2,18	2,36
Ld	[m]	5,41	5,66	6,10
L _R	[m]	11,56	12,02	12,82
hp	[m]	1,48	1,53	1,63

Fuente: Elaboración Propia Jorge Romero Navea

Tabla 4.9. Características hidráulicas de caída vertical, sector Los Rulos

PARÁMETRO		Gavión 1	Gavión 2	Gavión 3
Q	[m3/s]	33,50	33,50	33,50
В	[m]	25,00	20,00	20,00
a	[m]	2,00	2,00	2,00
hc	[m]	0,57	0,66	0,66
h1	[m]	0,22	0,26	0,26
h2	[m]	1,20	1,35	1,35
Ld	[m]	3,10	3,50	3,50
L_R	[m]	6,76	7,51	7,51
hp	[m]	0,87	0,96	0,96

Fuente: Elaboración Propia Jorge Romero Navea

Tabla 4.10. Características hidráulicas de caída vertical, sector La Isla

PARÁMETRO		Gavión 1	Gavión 2	Gavión 3
Q	[m3/s]	5,60	5,60	5,60
В	[m]	1,00	7,00	20,00
а	[m]	1,00	1,00	1,00
hc	[m]	0,24	0,40	0,20
h1	[m]	0,09	0,17	0,07
h2	[m]	0,53	0,79	0,45
Ld	[m]	1,36	2,06	1,17
L _R	[m]	3,02	4,31	2,63
hp	[m]	0,39	0,55	0,35

Fuente: Elaboración Propia Jorge Romero Navea

Finalmente, en la Tabla 4.11 se muestra un resumen con las longitudes recomendadas para las sábanas de protección de los distintos gaviones proyectados.

Tabla 4.11. Longitudes recomendadas sábanas de protección

	Ld [m]			
SECTOR	Gavión 1	Gavión 2	Gavión 3	
La Moralina	5,50	6,00	6,50	
Los Rulos	3,50	3,50	3,50	
La Isla	1,50	2,50	1,50	

Fuente: Elaboración Propia Jorge Romero Navea

5. DETERMINACION DE LAS CAPACIDADES DE ACUMULACION SUPERFICIAL DE AGUAS DE LAS OBRAS DE INTERCEPCION DE ESCURRIMIENTO SUPERFICIAL

5.1 ANTECEDENTES

La determinación de las capacidades de acumulación de aguas, se realizaron con los perfiles longitudinales y transversales de las microcuencas analizadas, ubicando primeramente en el perfil longitudinal la obra de intercepción en su respectiva cota, dibujar la obra y extender el nivel máximo de agua en el perfil hasta el punto donde corta con el terreno natural. Posteriormente, en los perfiles transversales se dibujaron las secciones de inundación, considerando la cota máxima de inundación para cada obra.

Las fórmulas utilizadas para determinar los volúmenes parciales y totales de acumulación de aguas, fueron:

$$V = \frac{S1 + S2 + \sqrt{S1}S2}{3}L$$
 Si $\frac{S1}{S2} > 3$

$$V = \frac{S1 + S2}{2}L \qquad \text{Si } \frac{S1}{S2} \le 3$$

5.2 CAPACIDAD DE ACUMULACIÓN SUPERFICIAL DE AGUA DE LAS OBRAS DE LA MICROCUENCA LA ISLA – PEÑA BLANCA.

CUBICACION VOLUMEN AGUA CON PRIMERA INTERCEPCION

Muro N° 1, Ubicado en Km 0.140. Altura 1 m.

PΓ	Г	Distancia	Área			Volumen
	•	Parcial	Agua acumulada		Relación	Agua a
Inicio	Fin	- aroiai	inicio (S₁)	término (S ₂)	Áreas	Almacenar
IIIICIO		(m)	(m2)	(m2)		(m3)
92,08	100	7,92	0	18,62	0	74,00
100	120	20,00	18,62	20,37	0,91	390,00
120	140	20,00	20,37	33,14	0,61	535,00
		_	_		TOTAL	999,00

CUBICACION VOLUMEN AGUA CON PRIMERA INTERCEPCION

Muro N° 2, ubicado en Km 0.200. Altura 1 m.

P	Г	Distancia	Área			Volumen
		Parcial	Agua acumulada		Relación	Agua a
Inicio	Fin		inicio (S₁)	término (S ₂)	Áreas	Almacenar
IIIICIO		(m)	(m2)	(m2)		(m3)
151,8	160	8,20	0	1,76	0	7,00
160	180	20,00	1,76	0,90	1,96	27,00
180	200	20,00	0,90	4,47	0,2	54,00
					TOTAL	88,00

CUBICACION VOLUMEN AGUA CON SEGUNDA INTERCEPCION

Muro N° 3, ubicado en Km 0.260. Altura 1 m.

P	Γ	Distancia Parcial	Área Agua acumulada inicio (S ₁) término (S ₂) (m2) (m2)		Relación	Volumen Agua a
Inicio	Fin	(m)			Áreas	Almacenar (m3)
219,54	220	0,46	0	0,33	0	0,00
220	240	20,00	0,33	12,84	0,03	132,00
240	260	20,00	12,84	38,82	0,33	517,00
					TOTAL	649,00

			CAPACIDAD		
COMUNIDAD	MICROCUENCA	OBRAS	PARCIAL (m3)	TOTAL (m3)	
PEÑABLANCA	LA ISLA	BARRERA N° 1	999		
		BARRERA N° 2	88		
		BARRERA N° 3	649	1.736	

5.3 CAPACIDAD DE ACUMULACIÓN SUPERFICIAL DE AGUA DE LAS OBRAS DE LA MICROCUENCA LOS RULOS – CANELA ALTA.

CUBICACION VOLUMEN AGUA CON PRIMERA INTERCEPCION

Muro N° 1: Ubicado en Km 0.260. Altura 2 m.

PT		Distancia Aqua acumulada		Relación	Volumen Agua a	
Inicio	Fin	Parcial (m)	inicio (S ₁) (m2)	término (S ₂) (m2)	Áreas	Almacenar (m3)
177,5	180	2,50	0	0,01	0	0,00
180	200	20,00	0,01	6,47	0	65,00
200	220	20,00	6,47	18,71	0,35	252,00
220	240	20,00	18,71	30,53	0,61	492,00
240	260	20,00	30,53	58,91	0,52	894,00
					TOTAL	1.703,00

CUBICACION VOLUMEN AGUA CON SEGUNDA INTERCEPCION

Muro N° 2, ubicado en Km 0.340. Altura 2 m.

РТ		Distancia Parcial	Agua agumulada		Relación	Volumen Agua a
			inicio (S ₁)	inicio (S ₁) término (S ₂)		Almacenar
Inicio	Fin	(m)	(m2)	(m2)		(m3)
285,83	300	14,17	0	9,95	0	70,00
300	320	20,00	9,95	33,67	0,3	436,00
320	340	20,00	33,67	50,48	0,67	842,00
					TOTAL	1.348,00

CUBICACION VOLUMEN AGUA CON TERCERA INTERCEPCION

Muro N° 3, ubicado en Km 0.460. Altura 2 m.

PT		Distancia Parcial		rea cumulada	Relación	Volumen Agua a
Inicio	Fin	(m)	inicio (S ₁) (m2)	término (S ₂) (m2)	Áreas	Almacenar (m3)
360,5	380	19,50	0	0,33	0	3,00
380	400	20,00	0,33	11,02	0,03	114,00
400	420	20,00	11,02	15,94	0,69	270,00
420	440	20,00	15,94	23,78	0,67	397,00
440	460	20,00	23,78	35,88	0,66	597,00
					TOTAL	1.381,00

			CAPACIDAD		
COMUNIDAD	MICROCUENCA	OBRAS	PARCIAL	TOTAL	
			(m3)	(m3)	
CANELA ALTA	LOS RULOS	BARRERA N° 1	1.703		
		BARRERA N° 2	1.348		
		BARRERA N° 3	1.381	4.432	

5.4 CAPACIDAD DE ACUMULACIÓN SUPERFICIAL DE AGUA DE LAS OBRAS DE LA MICROCUENCA LA MORALINA – MANQUEHUA.

			CAPA	CIDAD
COMUNIDAD	MICROCUENCA	OBRAS	PARCIAL	TOTAL
			(m3)	(m3)
MANQUEHUA	LA MORALINA	BARRERA N° 1	3.928	
		BARRERA N° 2	5.618	
		BARRERA N° 3	3.868	13.414

CUBICACION VOLUMEN AGUA CON PRIMERA INTERCEPCION

Muro N° 1, ubicado en Km 0.200. Altura 3,0 m.

P.	т	Distancia	Áro	Área		Volumen
	•	Parcial	Agua ac	umulada	Relación	Agua a
Inicio	Fin		inicio (S₁)	término (S ₂)	Áreas	Almacenar
IIIICIO		(m)	(m2)	(m2)		(m3)
43,86	60	16,14	0	16,52	0	133,00
60	80	20,00	16,52	19,80	0,83	363,00
80	100	20,00	19,80	22,86	0,87	427,00
100	120	20,00	22,86	30,23	0,76	531,00
120	140	20,00	30,23	18,56	1,63	488,00
140	160	20,00	18,56	30,51	0,61	491,00
160	180	20,00	30,51	32,73	0,93	632,00
180	200	20,00	32,73	53,57	0,61	863,00
					TOTAL	3.928,00

CUBICACION VOLUMEN AGUA CON SEGUNDA INTERCEPCION

Muro N° 2, ubicado en Km 0.460. Altura 3,0 m.

P	Γ	Distancia		Área Agua acumulada		Volumen
		Parcial	•		Relación	Agua a
Inicio	Fin	(m)	inicio (S₁) (m2)	término (S ₂) (m2)	Áreas	Almacenar (m3)
225,19	240	14,81	0,00	0,76	0	6,00
240	260	20,00	0,76	4,95	0,15	57,00
260	280	20,00	4,95	10,29	0,48	152,00
280	300	20,00	10,29	12,87	0,8	232,00
300	320	20,00	12,87	12,34	1,04	252,00
320	340	20,00	12,34	18,47	0,67	308,00
340	360	20,00	18,47	30,61	0,6	491,00
360	380	20,00	30,61	35,99	0,85	666,00
380	400	20,00	35,99	36,14	1	721,00
400	420	20,00	36,14	41,91	0,86	781,00
420	440	20,00	41,91	48,36	0,87	903,00
440	460	20,00	48,36	56,49	0,86	1.049,00
					TOTAL	5.618,00

CUBICACION VOLUMEN AGUA CON TERCERA INTERCEPCION

Muro N° 3, ubicado en Km 0.940. Altura 3.0 m.

P	Γ	Distancia	Áre		Dalasián	Volumen
	1	Parcial	Agua ac	término (S ₂)	Relación Áreas	Agua a Almacenar
Inicio	Fin	(m)	inicio (S₁) (m2)	(m2)	Aleas	(m3)
707,58	720	12,42	0	2,14	0	13,00
720	740	20,00	2,14	0,30	7,13	24,00
740	760	20,00	0,30	6,85	0,04	72,00
760	780	20,00	6,85	7,52	0,91	144,00
780	800	20,00	7,52	11,29	0,67	188,00
800	820	20,00	11,29	17,84	0,63	291,00
820	840	20,00	17,84	22,89	0,78	407,00
840	860	20,00	22,89	22,71	1,01	456,00
860	880	20,00	22,71	25,02	0,91	477,00
880	900	20,00	25,02	26,37	0,95	514,00
900	920	20,00	26,37	33,36	0,79	597,00
920	940	20,00	33,36	35,15	0,95	685,00
_			-		TOTAL	3.868,00

6. ANALISIS HIDROLÓGICO OPERACIONAL DE LAS OBRAS DE INTERCEPCIÓN DEL ESCURRIMIENTO DE AGUAS LLUVIAS

Si bien la capacidad de acumulación de aguas de las obras de intercepción de aguas lluvias diseñadas para las microcuencas de La Isla, en Peña Blanca; Los Rulos, en Canela Alta y La Moralina, en Manquehua, son los que se señalan en el cuadro siguiente, es muy probable que ésta no sea la capacidad real de captación y acumulación tanto, superficial como subterráneamente.

Las razones señaladas para afirmar lo anteriormente indicado, se basan en el hecho que la lámina de polietileno de alta densidad (HDPE), a instalar en cada una de las intercepciones superficiales como complemento a estas obras, para interceptar el flujo subterráneo, solo tendrá una profundidad de intercepción de 5 metros.

Considerando que la roca fundamental, en las tres microcuencas, se encuentra a una profundidad superior a los 30 metros, el flujo subterráneo del agua, se realizaría bajo la lámina de polietileno de alta densidad (5 metros de profundidad), permitiendo con ello la acción de recargar la napa o acuífero natural existente en las microcuencas.

CAPACIDAD DE ALMECENAMIENTO DE LAS ORR	
	ΛС

			CAPAC	CIDAD
COMUNIDAD	MICROCUENCA	OBRAS	PARCIAL	TOTAL
			(m3)	(m3)
PEÑABLANCA	LA ISLA	BARRERA N° 1	999,00	
		BARRERA N° 2	88,00	
		BARRERA N° 3	649,00	1.736,00
MANQUEHUA	LA MORALINA	BARRERA N° 1	3.928,00	
		BARRERA N° 2	5.618,00	
		BARRERA N° 3	3.868,00	13.414,00
CANELA ALTA	LOS RULOS	BARRERA N° 1	1.703,00	
		BARRERA N° 2	1.348,00	
		BARRERA N° 3	1.381,00	4.432,00

Teniendo en consideración lo anteriormente señalado, es probable que en cada lluvia que se produzca en el año, parte o la totalidad del agua se infiltre, dejando vacante su capacidad de almacenamiento de agua, permitiendo con esto, que en cada una de las lluvias, se genere una nueva acumulación de agua, que también podría infiltrarse.

De esta forma, hemos planteado la hipótesis que en cada evento lluvioso que se presente en el año, se acumule una cantidad de agua equivalente a la máxima capacidad de almacenamiento de las obras diseñadas. Considerando esta hipótesis, se realizó una simple simulación operacional de cada una de las microcuencas, usando los cálculos de escorrentía determinados en el Tomo I de este estudio para los 35 años analizados (desde temporada agrícola 1979-1980 a 2013-2014).

Los resultados obtenidos de esta simulación son los siguientes:

6.1 MICROCUENCA LA ISLA. PEÑA BLANCA

Los caudales medios mensuales determinados en el Tomo I de este estudio para la microcuenca La Isla, de Peña Blanca, son los siguientes:

Caudales Medios Mensuales [I/s] Sector La Isla

			Cauda	C3 NIC	ulos II	ielisud	iiea [i/s	3] 060	OI La	ı Sıa			
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR	ANUAL
1979 - 1980				0									0,03
1980 - 1981	22			4		1							2,25
1981 - 1982		5											0,39
1982 - 1983		0	0	6	5								0,95
1983 - 1984				22									1,82
1984 - 1985				45									3,77
1985 - 1986				1									0,08
1986 - 1987		2											0,19
1987 - 1988				73	3								6,39
1988 - 1989			0										0,02
1989 - 1990				1	4								0,37
1990 - 1991				2									0,14
1991 - 1992		7	21									1	2,33
1992 - 1993			11		6								1,41
1993 - 1994	000000000000000000000000000000000000000			1	3				•••••				0,27
1994 - 1995			2	0	0								0,14
1995 - 1996			0	2	0								0,17
1996 - 1997			0	4	0								0,33
1997 - 1998		0	35	0	73	0	0	0	0	0	0	0	9,00
1998 - 1999	0	0	0	0	0	0	0	0	0	0	0	0	0,01
1999 - 2000		0	2	0	2	2	0						0,55
2000 - 2001			16			11							2,26
2001 - 2002		3	0	28	0								2,57
2002 - 2003		3	25	13	1								3,55
2003 - 2004		4											0,33
2004 - 2005				2	8								0,83
2005 - 2006		2			1								0,20
2006 - 2007			4	0	0								0,34
2007 - 2008					0								0,03
2008 - 2009					4								0,31
2009 - 2010			3		4								0,55
2010 - 2011		2	1										0,23
2011 - 2012			31										2,60
2012 - 2013					3								0,24
2013 - 2014		4											0,29

Fuente: Estudio cosecha de aguas lluvias en áreas de secano. Región de Coquimbo. Tomo I Nota: Se ha destacado en color celeste la temporada más lluviosa y en color marrón, la más seca. Los volúmenes de agua mensuales, determinados en base a los caudales medios mensuales indicados en el cuadro anterior, son los siguientes:

		,	Volume	nes Med	lios Mer	suales	[m3] - S	ector La	Isla			
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ENE	FEB	MAR
1979 - 1980				1.018								
1980 - 1981	57.231			11.758		1.452					ſ	
1981 - 1982		12.535									T	
1982 - 1983		589	52	16.097	13.767						r	
1983 - 1984				58.416							ľ	
1984 - 1985				121.144				r			r	
1985 - 1986				2.491								
1986 - 1987		5.973										
1987 - 1988				196.755	8.785							
1988 - 1989			726									
1989 - 1990				1.339	10.633							
1990 - 1991				4.446								
1991 - 1992		17.490	53.551									2.089
1992 - 1993			28.590		15.722							
1993 - 1994				1.527	7.285							
1994 - 1995			4.406	0	0							
1995 - 1996	II		0	5.303	0							
1996 - 1997			0	10.660	0							
1997 - 1998		0	90.850	0	195.550	0	0	0		0	0	0
1998 - 1999	0	0	363	0	0	0	0	0	0	0	0	0
1999 - 2000		482	5.028	321	6.669	4.640	321				Ĺ	
2000 - 2001			40.746			29.652					ſ	
2001 - 2002		6.883	0	75.424	214							
2002 - 2003		7.955	65.707	34.819	3.294							
2003 - 2004		10.767										
2004 - 2005				6.642	20.168							
2005 - 2006		4.098			2.250							
2006 - 2007			10.031	670	0							
2007 - 2008	II				937							
2008 - 2009	II				9.857							
2009 - 2010			7.517		10.044							
2010 - 2011	II	4.553	2.799									
2011 - 2012			80.819									
2012 - 2013					7.633							
2013 - 2014	I	9.455	l		l	l	l	1		l	ĺ	ĺ

Realizada la simulación operacional, los volúmenes de agua, que teóricamente se abrían captado y que hubiesen recargado las napas de la microcuenca La Isla, oscilarían entre 363 m3, en la temporada menos lluviosa (1998-1999), hasta 6.944 m3, en la temporada 2001-2002.

SIMULACION HIDROLOGICA DE OPERACIÓN DE LAS OBRAS DE INTERCEPCION (m3) - Sector La Isla

1979 1980 1981 1.736	TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ENE	FEB	MAR	Total
1980 - 1981 1,736 1,73		ADIX	IVIAI	3014		700	JEI	001	1404	Dic	LIVE	120	WAR	
1981 - 1982 1,736 589 52 1,736 1		1 726					1 453							
1982 - 1983		1.736	4 700		1./36		1.452							
1983 - 1984 1985 1.736														
1984 - 1985 1986 1986 1.736			589	52		1.736								
1985 - 1986 1.736														
1986 - 1987 1 1736 1 1736 1 1736 1 1736 1 1736 1 1736 3 1736 </td <td></td>														
1987 - 1988 1989 1989 1.736			4 ====		1./36									
1988 - 1989 1990 1,339 1,736 1,339 1,736 1,736 1,736 3,075 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 1,736 3,472 3,472 3,472 3,263 3,472 3,263 3,472 3,263 3,472 3,263 3,472 3,263 1,736			1./36		4 706	4 ====								
1989 - 1990 1991 1,736				726	1./36	1./36								
1990 - 1991 1992 1.736				/26	4 220	4 726								
1991 - 1992 1.736 1.736 1.736 1.736 1.736 1.736 3.472 1993 - 1994 1.936 1.527 1.736 3.472 3.263 1994 - 1995 1.736 0 0 0 1.736 0 1.736 1995 - 1996 0 1.736 0 0 0 0 1.736 1.736 1997 - 1998 0 0 1.736 0 0						1./36								
1992 - 1993 1994 1.736 1.736 1.736 3.472 1993 - 1994 1995 1.736 0 0 0 1.736 0 0 1.736			1 726	1 720	1./36								1 720	
1993 - 1994 1995 1.736 0 0 0 1.736 0 0 1.736 0 1.736 1.736 0 1.736 1.736 1.736 0 1.736 1.736 1.736 0 1.736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1./36			1 720							1./36	
1994 - 1995 1996 1,736 0 0 1,736 0 1,736<				1.736	1 527									
1995 - 1996				1 720										
1996 - 1997 0 1.736 0 1.736 0 0 1.736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					-	_								
1997 - 1998														
1998 - 1999 0 0 363 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 363 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 363 0 1.736 <td></td> <td>0</td> <td>0</td> <td>_</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>		0	0	_			0	0	0	0	0	0	0	
1999 - 2000														
2000 - 2001 1.736		U							U	V	U		U	
2001 - 2002 1.736 0 1.736 214 2002 - 2003 1.736 1.736 1.736 1.736 2003 - 2004 1.736 1.736 1.736 2004 - 2005 1.736 1.736 1.736 2005 - 2006 1.736 1.736 1.736 2007 - 2008 1.736 1.736 1.736 2009 - 2010 1.736 1.736 1.736 2010 - 2011 1.736 1.736 1.736 2011 - 2012 1.736 1.736 1.736 2012 - 2013 1.736 1.736 1.736			462		321	1./30		321						
2002 - 2003 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 3.472 3.472 3.472 3.472 2006 - 2007 1.736 6670 0 0 2007 - 2008 937 937 937 1.736			4 ====		4 706		1./36							
2003 - 2004 1.736 1.736 1.736 2004 - 2005 1.736 1.736 1.736 2005 - 2006 1.736 1.736 1.736 2006 - 2007 1.736 1.736 1.736 2007 - 2008 937 937 2008 - 2009 1.736 1.736 1.736 2009 - 2010 1.736 1.736 1.736 2010 - 2011 1.736 1.736 1.736 2011 - 2012 1.736 1.736 1.736 2012 - 2013 1.736 1.736 1.736														
2004 - 2005 1.736 1.736 1.736 1.736 2005 - 2006 1.736 1.736 1.736 1.736 2007 - 2008 1.736 1.736 1.736 1.736 2009 - 2010 1.736 1.736 1.736 2010 - 2011 1.736 1.736 1.736 2011 - 2012 1.736 1.736 1.736 2012 - 2013 1.736 1.736 1.736				1./30	1./30	1./30								
2005 - 2006 1.736 1.736 1.736 3.472 2006 - 2007 2008 1.736 670 0 2.406 2007 - 2008 937 1.736 937 2008 - 2009 1.736 1.736 1.736 2009 - 2010 1.736 1.736 3.472 2010 - 2011 1.736 1.736 3.472 2011 - 2012 1.736 1.736 1.736 2012 - 2013 1.736 1.736 1.736			1./30		1 726	1 726								
2006 - 2007 2008 2007 - 2008 937 2008 - 2009 1.736 2009 - 2010 1.736 2010 - 2011 1.736 2011 - 2012 1.736 2012 - 2013 1.736			1 726		1./30									
2007 - 2008 937 2008 - 2009 1.736 2009 - 2010 1.736 2010 - 2011 1.736 2011 - 2012 1.736 2012 - 2013 1.736			1./30	1 736	670									
2008 - 2009 1.736 2009 - 2010 1.736 2010 - 2011 1.736 2011 - 2012 1.736 2012 - 2013 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736 1.736				1.730	0,0									
2009 - 2010 1.736 1.736 1.736 2010 - 2011 1.736 1.736 3.472 2011 - 2012 1.736 1.736 1.736 2012 - 2013 1.736 1.736 1.736														
2010 - 2011 1.736 1.736 3.472 2011 - 2012 1.736 1.736 1.736 2012 - 2013 1.736 1.736 1.736				1.736										
2011 - 2012 1.736 1.736 1.736 1.73			1.736			1.,55								
2012 - 2013 1.736 1.736														
				230		1.736								
4 6 0 1 3 1 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	2013 - 2014		1.736			1.,55								1.736

Es importante destacar, que si las precipitaciones se concentran en pocos meses, el volumen a acumular sería menor si las lluvias se distribuyen en varios meses.

6.2 MICROCUENCA LOS RULOS. CANELA ALTA.

Los caudales medios mensuales determinados en el Tomo I de este estudio para la microcuenca Los Rulos, de Canela Alta, son los siguientes:

Caudales Medios Mensuales [I/s] Sector Los Rulos

			uaaai	70 11100	100 1110	Tiouaic	:S [I/S]	00000		4100			1
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR	ANUAL
1979 - 1980				5									0,38
1980 - 1981	200			37	1	19							21,41
1981 - 1982		68				2							5,80
1982 - 1983		22	19	151	135								27,20
1983 - 1984		2		198									16,69
1984 - 1985				327									27,22
1985 - 1986				9									0,75
1986 - 1987		39											3,24
1987 - 1988		3	3	683	137								68,83
1988 - 1989			4										0,36
1989 - 1990				34	21								4,57
1990 - 1991				10									0,80
1991 - 1992		23	279										25,24
1992 - 1993		6	61		193								21,61
1993 - 1994	28			4									2,70
1994 - 1995			5	10									1,30
1995 - 1996				7	1								0,66
1996 - 1997				30									2,53
1997 - 1998	0	0	320	0	484	0	10	0	0	0	0	0	67,79
1998 - 1999	0	0	2	0	0	0	0	0	0	0	0	0	0,14
1999 - 2000		8	2		24	17	2						4,37
2000 - 2001			193			51							20,29
2001 - 2002				153									12,75
2002 - 2003		76	250	84	23								36,12
2003 - 2004		27											2,24
2004 - 2005				13	68								6,73
2005 - 2006		15			13								2,31
2006 - 2007			38	2									3,36
2007 - 2008			13										1,09
2008 - 2009		2	35	3	53								7,74
2009 - 2010			20		12								2,65
2010 - 2011		30	40	5				2					6,38
2011 - 2012			147										12,22
2012 - 2013					7								0,64
2013 - 2014		18											1,47

Fuente: Estudio cosecha de aguas lluvias en áreas de secano. Región de Coquimbo. Tomo I

Nota: Se ha destacado en color celeste la temporada más lluviosa y en color marrón, la más seca.

Los volúmenes de agua mensuales, determinados en base a los caudales medios mensuales indicados en el cuadro anterior, son los siguientes:

Volumenes Medios Mensuales [m3] - Sector Los Rulos

			Volume	enes Med	ios Mens	uales [m	3] - Sect	or Los R	ulos			
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ENE	FEB	MAR
1979 - 1980				12.133								
1980 - 1981	518.400			99.154	1.527	50.000						
1981 - 1982		181.301		295		4.692						
1982 - 1983		58.550	48.496	404.197	361.316							
1983 - 1984		6.455		529.895								
1984 - 1985				874.846								
1985 - 1986				23.972								
1986 - 1987		104.163										
1987 - 1988		8.303	7.517	1.829.374	366.700							
1988 - 1989		(11.197									
1989 - 1990		723		90.209	56.086	[
1990 - 1991				25.847								
1991 - 1992		62.567	723.997			[455
1992 - 1993		15.803	157.049		516.315	(
1993 - 1994	72.913			10.794	777							
1994 - 1995			13.738	27.454								
1995 - 1996				18.213	2.946	52						
1996 - 1997				81.156								
1997 - 1998	0	0	829.803	0	1.295.489		25.900	0	0	0	0	0
1998 - 1999	0	80	4.199	0	0	0	0	0	0	0	0	0
1999 - 2000		20.758	4.484		63.585	44.556	5.518					
2000 - 2001			499.686			131.492						
2001 - 2002				409.849								
2002 - 2003		202.916	648.985	225.039	62.380							
2003 - 2004		71.299	622									
2004 - 2005				34.766	181.515							
2005 - 2006		40.283			33.882							
2006 - 2007			98.652	6.107								
2007 - 2008			34.033									
2008 - 2009		4.125	91.109	7.767	142.678							
2009 - 2010			51.503		32.060							
2010 - 2011		79.174	102.825	13.954				5.599				
2011 - 2012			380.065									
2012 - 2013			596		20.061							
2013 - 2014		47.381										

Realizada la simulación operacional, los volúmenes de agua, que teóricamente se abrían captado y que hubiesen recargado las napas de la microcuenca Los Rulos, oscilarían entre 4.279 m3, en la temporada menos lluviosa (1998-1999), hasta 22.160 m3, en la temporada 1999-2000.

SIMULACION HIDROLOGICA DE OPERACIÓN DE LAS OBRAS DE INTERCEPCION (m3) - Sector Los Rulos

	SIMUL	ACION HI	DROLOGI	CA DE OF	PERACIÓN	I DE LAS (DBRAS DE	INTERCE	PCION (r	n3) - Sect	or Los Ru	los	
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR	Total
1979 - 1980				4.432									4.432
1980 - 1981	4.432			4.432	1.527	4.432							14.823
1981 - 1982		4.432		295		4.432							9.159
1982 - 1983		4.432	4.432	4.432	4.432								17.728
1983 - 1984		4.432		4.432									8.864
1984 - 1985				4.432									4.432
1985 - 1986				4.432									4.432
1986 - 1987		4.432											4.432
1987 - 1988		4.432	4.432	4.432	4.432								17.728
1988 - 1989			4.432										4.432
1989 - 1990		723		4.432	4.432								9.587
1990 - 1991				4.432									4.432
1991 - 1992		4.432	4.432									455	9.319
1992 - 1993		4.432	4.432		4.432								13.296
1993 - 1994	4.432			4.432	777								9.641
1994 - 1995			4.432	4.432									8.864
1995 - 1996				4.432	2.946	52							7.430
1996 - 1997 1997 - 1998	0	0	4.432	4.432	4.432	0	4.432	0	0	0	0	0	4.432 13.296
1998 - 1999	0	80	4.432	0	4.432	0	4.432	0	0	0	0	0	4.279
1999 - 2000	0	4.432	4.432	U	4.432	4.432	4.432	U	U	0	0	U	22.160
2000 - 2001		4.432	4.432		4.432	4.432	4.432						8.864
2000 - 2001			4.432	4.432		4.432							4.432
2001 - 2002		4.432	4.432	4.432	4.432								4.432 17.728
2002 - 2003		4.432	622	4.432	4.432								5.054
2004 - 2005		11.132	022	4.432	4.432								8.864
2005 - 2006		4.432			4.432								8.864
2006 - 2007			4.432	4.432									8.864
2007 - 2008			4.432										4.432
2008 - 2009		4.125	4.432	4.432	4.432								17.421
2009 - 2010			4.432		4.432								8.864
2010 - 2011		4.432	4.432	4.432				4.432					17.728
2011 - 2012			4.432										4.432
2012 - 2013			596		4.432								5.028
2013 - 2014		4.432											4.432

6.3 MICROCUENCA LA MORALINA. MANQUEHUA.

Los caudales medios mensuales determinados en el Tomo I de este estudio para la microcuenca La Moralina, de Manquehua, son los siguientes:

Caudales Medios Mensuales [I/s] Sector La Moralina

<u> </u>					ensua							
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR
1979 - 1980				8								
1980 - 1981	461			96		14						
1981 - 1982		99										
1982 - 1983		5	1	127	108							
1983 - 1984				461								
1984 - 1985				957								
1985 - 1986				20								
1986 - 1987		47										
1987 - 1988				1.545	79							
1988 - 1989			6			000000000000000000000000000000000000000			*******************************		***************************************	
1989 - 1990				35	60							
1990 - 1991				17								
1991 - 1992			544									
1992 - 1993		4	392		386							
1993 - 1994		150										
1994 - 1995			21									
1995 - 1996				22								
1996 - 1997				22								
1997 - 1998	0	0	596	0	1.411	0	21	0	0	0	0	0
1998 - 1999	0		3	0	0	0		0	0	0	0	0
1999 - 2000		2	2		19	82	6					
2000 - 2001			347			137						
2001 - 2002				352								
2002 - 2003		115	543	247	50							
2003 - 2004		98				000000000000000000000000000000000000000			*******************************	***********************	***************************************	000000000000000000000000000000000000000
2004 - 2005	1			18	218							
2005 - 2006		53			7	4						
2006 - 2007			80	22								
2007 - 2008			23		1							
2008 - 2009			128	7	50			•••••	***************************************		***************************************	
2009 - 2010			94		3							
2010 - 2011		5	168	10								
2011 - 2012			428									
2012 - 2013			3		14							
2013 - 2014		78										

Fuente: Estudio cosecha de aguas lluvias en áreas de secano. Región de Coquimbo. Tomo I Nota: Se ha destacado en color celeste la temporada más lluviosa y en color marrón, la más seca. Los volúmenes de agua mensuales, determinados en base a los caudales medios mensuales indicados en el cuadro anterior, son los siguientes:

			Volun	nenes Me	dios Men	suales [m	3] - Secto	r La Mora	lina			
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR
1979 - 1980				21.508								
1980 - 1981	1.195.819			258.064		36.444						
1981 - 1982		265.188				•		7			7	
1982 - 1983		14.303	2.125	339.460	289.455	•		7				
1983 - 1984		7		1.235.466		•		7				
1984 - 1985		7		2.562.318		7		7				
1985 - 1986				52.845								
1986 - 1987		126.501										
1987 - 1988				4.136.950	210.254	(
1988 - 1989			15.656			[
1989 - 1990				93.610	159.793	(
1990 - 1991				44.890		[[
1991 - 1992			1.410.463			([
1992 - 1993		9.937	1.015.623		1.034.693	[
1993 - 1994		402.644										
1994 - 1995			54.924									
1995 - 1996				57.720		[.				
1996 - 1997				57.720								
1997 - 1998		0	1.544.728	0	3.780.160	0	56.836	0	0	0	0	0
1998 - 1999		0	7.724	0	0	0	0	0	0	0	0	0
1999 - 2000		4.259	6.169		49.550	211.896	16.927					
2000 - 2001			898.672			356.244						
2001 - 2002				942.502								
2002 - 2003		309.114	1.406.627	661.190	134.429							
2003 - 2004		263.421										
2004 - 2005				48.372	584.989							
2005 - 2006		141.420			17.410	9.253						
2006 - 2007			208.008	58.952								
2007 - 2008			58.657		1.848							
2008 - 2009			332.346	19.070	132.715							
2009 - 2010		40.500	242.533		8.116							
2010 - 2011		12.562	435.793	25.900								
2011 - 2012 2012 - 2013			1.110.231 7.232		38.569							
		200 271	1.232		30.303							
2013 - 2014		209.371										

Realizada la simulación operacional, los volúmenes de agua, que teóricamente se abrían captado y que hubiesen recargado las napas de la microcuenca Los Rulos, oscilarían entre 7.724 m3, en la temporada menos lluviosa (1998-1999), hasta 53.656 m3, en la temporada 2002-2003.

	SIMULA	CION HIE	ROLOGIC	CA DE OPE	RACIÓN	DE LAS OI	BRAS DE I	NTERCEP	CION (m3) - Sector	La Moral	lina	
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR	Total
1979 - 1980				13.414									13.414
1980 - 1981	13.414			13.414		13.414							40.242
1981 - 1982		13.414											13.414
1982 - 1983		13.414	2.125	13.414	13.414								42.367
1983 - 1984				13.414									13.414
1984 - 1985				13.414									13.414
1985 - 1986				13.414									13.414
1986 - 1987		13.414											13.414
1987 - 1988				13.414	13.414								26.828
1988 - 1989			13.414		0								13.414
1989 - 1990				13.414	13.414								26.828
1990 - 1991				13.414									13.414
1991 - 1992			13.414										13.414
1992 - 1993		9.937	13.414		13.414								36.765
1993 - 1994		13.414											13.414
1994 - 1995			13.414	40.444									13.414
1995 - 1996				13.414									13.414
1996 - 1997 1997 - 1998		0	13.414	13.414	13.414	0	12 414	0	0	0			13.414 40.242
1998 - 1999	0	0	7.724	0	15.414	0	13.414	0	0	0	0	0	7.724
1999 - 2000	U	4.259	6.169	U	12 414	13.414	13.414	U	U	U	U	U	50.670
		4.239			13.414		13.414						
2000 - 2001 2001 - 2002			13.414	13.414		13.414							26.828 13.414
2001 - 2002		13.414	13.414	13.414	13.414								53.656
2002 - 2003		13.414	13.414	13.414	13.414								13.414
2004 - 2005	3.732	13.714		13.414	13.414								30.560
2005 - 2006		13.414			13.414	9.253							36.081
2006 - 2007			13.414	13.414		5.23							26.828
2007 - 2008			13.414		1.848								15.262
2008 - 2009			13.414	13.414	13.414								40.242
2009 - 2010			13.414		8.116								21.530
2010 - 2011		12.562	13.414	13.414									39.390
2011 - 2012			13.414										13.414
2012 - 2013			7.232		13.414								20.646
2013 - 2014		13.414											13.414

6.4 EXCEDENTES DE AGUA EN LAS MICROCUENCAS.

En cada evento lluvioso y su consecuente escurrimiento de aguas por los puntos de emplazamientos de las obras de intercepción del escurrimiento de aguas lluvias, no toda el agua que escurre es retenida por las obras diseñadas, ya que los volúmenes de escurrimiento de aguas, superan las capacidades de acumulación de las obras.

A continuación se presentan los volúmenes excedentes de agua para cada una de las microcuencas analizadas en este estudio.

6.4.1 MICROCUENCA LA ISLA. PEÑA BLANCA.

Los volúmenes mensuales y anuales que exceden la capacidad de acumulación de aguas en las obras de intercepción del flujo superficial de aguas en la microcuenca La Isla de Peñablanca, son los siguientes:

EXCEDENTES ANUALES DE AGUA SEGÚN SIMULACION COMPUTACIONAL (m3/mes) SECTOR LA ISLA

TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR	Total
1979 - 1980				0									0
1980 - 1981	55.495			10.022		0							65.517
1981 - 1982		10.799											10.799
1982 - 1983		0	0	14.361	12.031								26.392
1983 - 1984				56.680									56.680
1984 - 1985				119.408									119.408
1985 - 1986				755									755
1986 - 1987		4.237											4.237
1987 - 1988				195.019	7.049								202.068
1988 - 1989			0										0
1989 - 1990				0	8.897								8.897
1990 - 1991				2.710									2.710
1991 - 1992		15.754	51.815									353	67.922
1992 - 1993			26.854		13.986								40.840
1993 - 1994				0	5.549								5.549
1994 - 1995			2.670	0	0								2.670
1995 - 1996			0	3.567	0								3.567
1996 - 1997			0	8.924	0								8.924
1997 - 1998	0	0	89.114	0	193.814	0	0	0	0	0	0	0	282.928
1998 - 1999	0	0	0	0	0	0	0	0	0	0	0	0	0
1999 - 2000		0	3.292	0	4.933	2.904	0						11.129
2000 - 2001			39.010		_	27.916							66.926
2001 - 2002		5.147	0	73.688	0								78.835
2002 - 2003 2003 - 2004		6.219 9.031	63.971	33.083	1.558								104.831 9.031
2003 - 2004 2004 - 2005		9.031		4.906	18.432								23.338
2004 - 2005		2.362		4.500	514								23.336
2006 - 2007		2.302	8.295	0	0								8.295
2007 - 2008			0.233	U	0								0.293
2008 - 2009					8.121								8.121
2009 - 2010			5.781		8.308								14.089
2010 - 2011		2.817	1.063		0.500								3.880
2011 - 2012			79.083										79.083
2012 - 2013			12.000		5.897								5.897
2013 - 2014		7.719			2.35.								7.719

Como puede observarse, los excedentes de agua son significativos y oscilan desde 755 m3/año (temporada 1985-1986), hasta 282.928 m3/año, en la temporada 1997-1998.

6.4.2 MICROCUENCA LOS RULOS. CANELA ALTA.

2013

2014

42,949

Los volúmenes mensuales y anuales que exceden la capacidad de acumulación de aguas en las obras de intercepción del flujo superficial de aguas en la microcuenca Los Rulos de Canela Alta, son los siguientes:

EXCEDENTES ANUALES DE AGUA SEGÚN SIMULACION COMPUTACIONAL (m3/mes) SECTOR LOS RULOS TEMPORADA ABR MAY JUN JUL AGO NOV MAR Total 1979 - 1980 7.701 7.70 1980 1981 513.968 94.722 45.568 654.25 1981 1982 176.869 260 0 177.129 1982 1983 54.118 44.064 399.765 356.884 854.83 1983 2.023 1984 525.463 527.48 1984 1985 870.414 870.41 1985 1986 19.540 19.54 1986 1987 99.731 99.731 1987 1988 3.871 3.085 1.824.942 362.268 2.194.166 1988 1989 6.765 6.76 1989 1990 0 85.777 51.654 137.431 1990 1991 21.415 21.415 1991 1992 58.135 719.565 0 777.700 1992 152.617 511.883 1993 11.371 675.871 1993 1994 68.481 6.362 74.84 1994 1995 9.306 23.022 32.328 1995 1996 13.781 0 0 13.781 1996 1997 76.724 76.72 825.371 1.291.057 21.468 1997 1998 2.137.89 1998 1999 1999 2000 16.326 52 59.153 40.124 1.086 116.741 2000 2001 495.254 127.060 622.314 2001 2002 405.417 405.417 2002 2003 198,484 644.553 220.607 57.948 1.121.592 2003 2004 66.867 0 66.86 2004 2005 30.334 177.083 207.417 2005 2006 35.851 29.450 65.301 2006 2007 94.220 1.675 95.895 2007 2008 29.601 29.601 2008 2009 86.677 3.335 138,246 228.25 2009 2010 47.071 27.628 74.69 9.522 2010 2011 74.742 98.393 1.167 183.824 2011 2012 375.633 375.633 2012 15.629 2013 15.629 0

Para la microcuenca Los Rulos, de Canela Alta, los excedentes de agua son aún mayores que los determinados para la microcuenca La Isla, de Peñablanca, debido a que la precipitación en este sector y la superficie de la cuenca aportante son mayores. Los excedentes de agua en esta microcuenca oscilan desde 6.765 m3/año (temporada 1988-1989), hasta 2.137.896 m3/año, en la temporada 1997-1998.

Es importante a su vez destacar, que al igual que la microcuenca cuenca La Isla de Peña Blanca, existen temporada agrícolas en que las obras podrían captar todo el escurrimiento superficial de aguas, como teóricamente ocurre en cuatro temporadas en la microcuenca La Isla y una temporada en la microcuenca Los Rulos.

42.94

6.4.3 MICROCUENCA LA MORALINA. MANQUEHUA.

Los volúmenes mensuales y anuales que exceden la capacidad de acumulación de aguas en las obras de intercepción del flujo superficial de aguas en la microcuenca La Moralina de Manquehua, son los siguientes:

EXCEDENTES ANUALES DE AGUA SEGÚN SIMULACION COMPUTACIONAL (m3/mes) SECTOR LA MORALINA

TEMPODAS			S ANUALES									2440	Takal
TEMPORADA	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	ENE	FEB	MAR	Total
1979 - 1980				8.094									8.094
	1.182.405			244.650		23.030							1.450.085
1981 - 1982		251.774											251.774
1982 - 1983		889		326.046	276.041								602.976
1983 - 1984				1.222.052									1.222.052
1984 - 1985				2.548.904									2.548.904
1985 - 1986				39.431									39.431
1986 - 1987		113.087											113.087
1987 - 1988				4.123.536	196.840								4.320.376
1988 - 1989			2.242										2.242
1989 - 1990				80.196	146.379								226.575
1990 - 1991				31.476									31.476
1991 - 1992			1.397.049										1.397.049
1992 - 1993			1.002.209		1.021.279								2.023.488
1993 - 1994		389.230											389.230
1994 - 1995			41.510										41.510
1995 - 1996				44.306									44.306
1996 - 1997				44.306									44.306
1997 - 1998	0	0	1.531.314	0	3.766.746	0	43.422	0	0	0	0	0	5.341.482
1998 - 1999	0			0	0	0		0	0	0	0	0	0
1999 - 2000					36.136	198.482	3.513						238.131
2000 - 2001			885.258			342.830							1.228.088
2001 - 2002				929.088									929.088
2002 - 2003		295.700	1.393.213	647.776	121.015								2.457.704
2003 - 2004		250.007											250.007
2004 - 2005				34.958	571.575								606.533
2005 - 2006		128.006			3.996								132.002
2006 - 2007			194.594	45.538									240.132
2007 - 2008			45.243										45.243
2008 - 2009			318.932	5.656	119.301								443.889
2009 - 2010			229.119										229.119
2010 - 2011			422.379	12.486									434.865
2011 - 2012			1.096.817										1.096.817
2012 - 2013					25.155								25.155
2013 - 2014		195.957											195.957

Como puede observarse, los excedentes de agua en la microcuenca La Moralina de Manquehua, son los mayores de las tres microcuencas estudiadas, esto debido a que esta microcuenca es de segundo orden, es decir, drena el escurrimiento superficial de dos microcuencas primarias.

Los excedentes de agua oscilan desde 2.242 m3/año (temporada 1988-1989), hasta 5.341.482 m3/año, en la temporada 1997-1998.

7. DISEÑO ESTRUCTURAL PRESAS DE GAVIONES.

7.1 SECTOR LA ISLA – BASES DE CÁLCULO.

7.1.1 Generalidades.

El proyecto consiste en tres presas ubicadas en la quebrada La Isla, Región de Coquimbo. Las presas serán construidas con gaviones de malla de acero galvanizado. La obra llevará una membrana HDPE es su cara aguas arriba para otorgarle impermeabilización.

Las dimensiones de las presas han sido definidas por el estudio hidráulico, acorde a las características la zona y necesidades del proyecto, por lo que el presente diseño calcula la longitud de los gaviones para asegurar su estabilidad estática y sísmica, y cumplir con la geometría ya definida.

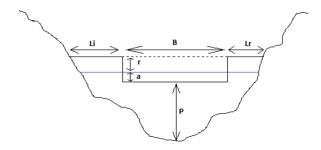


Fig. 1. Datos geométricos del diseño de presa de gaviones, según estudio hidráulico

		LA ISLA							
PARÁMETRO	LONGITUD [m]								
PARAIVIETRO	M1	Z1	M2	Z2	M3	Z3			
Li (lado izq.)	6,15	397,37	6,91	396,30	50,50	394,47			
B (ancho vert)	15	-	7	-	20	-			
Lr (lado der.)	16,83	397,37	6,14	396,30	23,30	394,47			
r (revancha)	0,5	397,37	0,5	396,30	0,5	394,47			
a (alt. Agua)	0,40	396,87	0,65	395,80	0,33	393,97			
P (alt max muro)	1	396,47	1	395,15	1	393,64			
ZMIN (cota basal)	-	395,47	-	394,15	-	392,64			

7.1.2 Normas.

El cálculo se ciñe a las normas pertinentes del Instituto Nacional de Normalización y a los códigos siguientes.

- Norma NCH 1537 of. 79 Cargas permanentes y sobrecargas
- Norma NCH 433 of. 1996 m 2009. Diseño sísmico de edificios.

7.1.3 Cargas y sobrecargas verticales.

- Para los elementos gaviones se consideró una densidad de 2200 kg/m3., con un porcentaje de vacíos del 20%.
- La densidad del agua fue considerada con sedimentos = 1200 kg/m3
- No se consideraron sobrecargas adicionales.

7.1.4 Cargas dinámicas. Análisis sísmico.

Para calcular las fuerzas dinámicas en acción, se consideró un coeficiente sísmico para el muro y el agua de 0.25, el cual corresponde al coeficiente máximo considerando los parámetros definidos en la Norma para una estructura no común, R=3, suelo tipo C y zona sísmica 3.

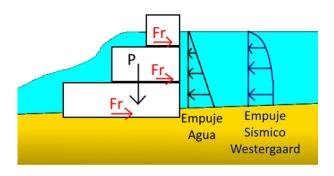
$$Cmax = \frac{0.9 \text{ SAo}}{g}$$

Para cuantificar el esfuerzo sísmico producto del empuje del agua con la presa llena, se utilizó la fórmula de Westergaard, considerando parámetros conservadores, la cual se aplica en 2/5 de la altura de agua. El valor queda definido por:

$$F sism = 0.583 Csism H2$$

Siendo H: altura de aguas

7.1.5 Cálculo estabilidad de gaviones.


Para el cálculo de estabilidad de los gaviones, se realizó una verificación al deslizamiento y volcamiento de cada uno de los niveles de gaviones que conforman la presa considerando el empuje del agua y la fuerza sísmica producto del peso propio y del agua. Las mismas verificaciones fueron realizadas para el vertedero de la obra. De esta forma, se asegura que las distintas partes de la presa sean estables frente a esfuerzos estáticos y sísmicos.

El esfuerzo resistente para los gaviones ha sido definido como:

$$Fr = \mu \times N$$

Siendo µ : Coeficiente de roce gavión – gavión

N: Peso del gavión (por m lineal)

El coeficiente de roce ha sido considerado como 0.7

Independiente a ello, se ha indicado en planos que los gaviones deben ser cosidos en los distintos niveles, lo que aumenta su resistencia.

Los factores de seguridad admisible considerados son los siguientes:

Cuadro N° 1

FS DESLIZ	AMIENTO	FS VOLCAMIENTO			
ESTATICO	SISMICO	ESTATICO SISMICO			
min=1.5	min=1.2	min=2.0	min=1.5		

7.1.6 Verificación de tensiones en suelo.

Se verificó que no se produjeran tracciones en las fundaciones y que la tensión máxima no fuera mayor a σ adm = 1 kg/cm2, por tratarse de un suelo areno - arcilloso, según el estudio de mecánica de suelos. Para cargas sísmicas, se consideró un σ adm sísmico = 1.3 kg/cm2.

7.1.7 Resultados.

Desarrollados los cálculos, que se presentan en los Anexos del Estudio de Cosecha de Aguas Lluvias en áreas de Secano Región de Coquimbo, Tomo III, se obtuvieron los siguientes resultados para las tres obras de intercepción del escurrimiento de aguas lluvias de la microcuenca La Isla, de Peña Blanca, siendo sus factores de seguridad superiores a los indicados en el cuadro N° 1.

LA ISLA - MURO DE INTERCEPCIÓN DE GAVIONES MURO N° 1

NIVEL	Н	В	FS DESLIZAMIENTO		FS VOLCAMIENTO	
	[m]	[m]	ESTATICO	SISMICO	ESTATICO	SISMICO
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 2.6
NV1	1	1	12,8	2,7	68,8	3,9
N1	1	2	3,1	2,3	11,2	4,9
GENERAL						
VERTEDERO	1	2	2,67	2,2	8,2	6,2

LA ISLA - MURO DE INTERCEPCIÓN DE GAVIONES MURO N° 2

NIVEL	Н	В	FS DESLIZAMIENTO		FS VOLCAMIENTO		
	[m]	[m]	ESTATICO SISMICO		ESTATICO	SISMICO	
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 2.6	
NV1	1	1	4,9	2,5	16,0	3,7	
N1	1	2	2,3	2,2	6,9	4,5	
GENERAL							
VERTEDERO	1	2	2,18	2,1	5,7	5,7	

LA ISLA - MURO DE INTERCEPCIÓN DE GAVIONES MURO N° 3

NIVEL	Н	В	FS DESLIZAMIENTO		FS VOLCAMIENTO	
	[m]	[m]	ESTATICO	SISMICO	ESTATICO	SISMICO
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 2.6
NV1	1	1	18,9	2,7	122,4	4,0
N1	1	2	3,5	2,3	13,1	5,0
GENERAL						
VERTEDERO	1	2	2,84	2,3	9,2	6,4

7.2 SECTOR LOS RULOS – BASES DE CÁLCULO.

7.2.1 Generalidades.

El proyecto consiste en tres presas ubicadas en la quebrada Los Rulos, Región de Coquimbo. Las presas serán construidas con gaviones de malla de acero galvanizado. La obra llevará una membrana HDPE es su cara aguas arriba para otorgarle impermeabilización.

Las dimensiones de las presas han sido definidas por el estudio hidráulico, acorde a las características la zona y necesidades del proyecto, por lo que el presente diseño calcula la longitud de los gaviones para asegurar su estabilidad estática y sísmica, y cumplir con la geometría ya definida.

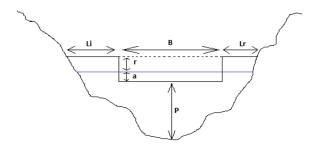


Fig. 1. Datos geométricos del diseño de presa de gaviones, según estudio hidráulico

		LOS RULOS						
PARÁMETRO	LONGITUD [m]							
PARAIVIETRO	M1	Z1	M2	Z2	М3	Z3		
Li (lado izq.)	13,22	876,61	8,24	874,41	14,85	871,42		
B (ancho vert)	25	-	20	-	20	-		
Lr (lado der.)	21,53	876,61	19,43	874,41	21,13	871,42		
r (revancha)	0,5	876,61	0,5	874,41	0,5	871,42		
a (alt. Agua)	0,93	876,11	1,08	873,91	1,08	870,92		
P (alt max muro)	2	875,18	2	872,83	2	869,84		
ZMIN (cota basal)	-	873,18	-	870,83	-	867,84		

7.2.2 Normas.

El cálculo se ciñe a las mismas normas señaladas para los cálculos estructurales de la microcuenca La Isla.

7.2.3 Cargas y sobrecargas verticales.

Se consideraron las mismas cargas señaladas para los cálculos estructurales de la microcuenca La Isla.

7.2.4 Cargas dinámicas. Análisis sísmico.

Se tomaron las mismas consideraciones para los cálculos estructurales de la microcuenca La Isla.

7.2.5 Cálculo estabilidad de gaviones.

Se realizaron las mismas verificaciones al deslizamiento y al volcamiento realizadas para los cálculos estructurales de la microcuenca La Isla, tanto para los esfuerzos estáticos como, para los sísmicos. Se utilizó el mismo coeficiente de roce.

Se consideraron los mismos factores de seguridad admisible, indicados para los cálculos estructurales de la microcuenca La Isla, e indicados en el cuadro N° 1.

7.2.6 Verificación de tensiones en suelo.

Se verificó que no se produjeran tracciones en las fundaciones y que la tensión máxima no fuera mayor a σ adm = 1 kg/cm2, por tratarse de un suelo areno - arcilloso, según el estudio de mecánica de suelos. Para cargas sísmicas, se consideró un σ adm sísmico = 1.3 kg/cm2.

7.2.7 Resultados.

Desarrollados los cálculos, que se presentan en los Anexos del Estudio de Cosecha de Aguas Lluvias en áreas de Secano Región de Coquimbo, Tomo III, se obtuvieron los siguientes resultados para las obras de intercepción del escurrimiento de aguas lluvias de la microcuenca Los Rulos, de Canela Alta, siendo sus factores de seguridad superiores a los indicados en el cuadro N° 1.

LOS RULOS - MURO DE INTERCEPCIÓN DE GAVIONES MURO Nº 1

NIVEL	Н	В	FS DESLIZAMIENTO		FS VOLCAMIENTO	
	[m]	[m]	ESTATICO	SISMICO	ESTATICO	SISMICO
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 1.5
NV2	0,5	1	-	2,8	-	8,0
NV1	1	1	3,6	2,4	8,2	2,4
N2	1	2	1,9	2,1	5,2	3,7
N1	1	3	1,6	1,9	4,3	4,1
GENERAL						
VERTEDERO	2	3	1,50	1,9	3,7	4,7

LOS RULOS - MURO DE INTERCEPCIÓN DE GAVIONES MURO N° 2

NIVEL	Н	В	FS DESLIZAMIENTO		FS VOLCAMIENTO	
	[m]	[m]	ESTATICO	SISMICO	ESTATICO	SISMICO
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 1.5
NV2	0,5	1	-	2,8	-	8,0
NV1	1	1	2,6	2,2	5,2	2,3
N2	1	2	1,7	2,0	4,2	3,5
N1	1	4	1,6	2,0	5,8	5,9
GENERAL						
VERTEDERO	2	4	1,62	2,0	5,3	6,9

LOS RULOS - MURO DE INTERCEPCIÓN DE GAVIONES MURO N° 3

NIVEL	Н	В	FS DESLIZAMIENTO		FS VOLCAMIENTO	
	[m]	[m]	ESTATICO	SISMICO	ESTATICO	SISMICO
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 1.5
NV2	0,5	1	-	2,8	-	8,0
NV1	1	1	2,6	2,2	5,2	2,3
N2	1	2	1,7	2,0	4,2	3,5
N1	1	4	1,6	2,0	5,8	5,9
GENERAL						
VERTEDERO	2	4	1,62	2,0	5,3	6,9

7.3 SECTOR LA MORALINA – BASES DE CÁLCULO.

7.3.1 Generalidades.

El proyecto consiste en tres presas ubicadas en la quebrada la Moralina, Región de Coquimbo. Las presas serán construidas con gaviones de malla de acero galvanizado. La obra llevará una membrana HDPE es su cara aguas arriba para otorgarle impermeabilización.

Las dimensiones de las presas han sido definidas por el estudio hidráulico, acorde a las características la zona y necesidades del proyecto, por lo que el presente diseño calcula la longitud de los gaviones para asegurar su estabilidad estática y sísmica, y cumplir con la geometría ya definida.

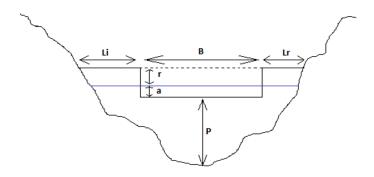


Fig. 1. Datos geométricos del diseño de presa de gaviones, según estudio hidráulico

	LA MORALINA							
PARÁMETRO	LONGITUD [m]							
PARAIVIETRO	M1	Z1	M2	Z2	М3	Z3		
Li (lado izq.)	6,38	655,85	7,80	652,99	6,84	646,92		
B (ancho vert)	25	-	23	-	20	-		
Lr (lado der.)	7,48	655,85	9,97	652,99	7,09	646,92		
r (revancha)	0,5	655,85	0,5	652,99	0,5	646,92		
a (alt. Agua)	1,64	655,35	1,72	652,49	1,89	646,42		
P (alt max muro)	3	653,71	3	650,77	3	644,53		
ZMIN (cota basal)	-	650,71	-	647,77	-	641,53		

7.3.2 Normas.

El cálculo se ciñe a las mismas normas señaladas para los cálculos estructurales de la microcuenca La Isla.

7.3.3 Cargas y sobrecargas verticales.

Se consideraron las mismas cargas señaladas para los cálculos estructurales de la microcuenca La Isla.

7.3.4 Cargas dinámicas. Análisis sísmico.

Se tomaron las mismas consideraciones para los cálculos estructurales de la microcuenca La Isla.

7.3.5 Cálculo estabilidad de gaviones.

Se realizaron las mismas verificaciones al deslizamiento y al volcamiento realizadas para los cálculos estructurales de la microcuenca La Isla, tanto para los esfuerzos estáticos como, para los sísmicos. Se utilizó el mismo coeficiente de roce.

Se consideraron los mismos factores de seguridad admisible, indicados para los cálculos estructurales de la microcuenca La Isla, e indicados en el cuadro N° 1.

7.3.6 Verificación de tensiones en suelo.

Se verificó que no se produjeran tracciones en las fundaciones y que la tensión máxima no fuera mayor a σ adm = 1 kg/cm2, por tratarse de un suelo areno - arcilloso, según el estudio de mecánica de suelos. Para cargas sísmicas, se consideró un σ adm sísmico = 1.3 kg/cm2.

7.3.7 Resultados.

Desarrollados los cálculos, que se presentan en los Anexos del Estudio de Cosecha de Aguas Lluvias en áreas de Secano Región de Coquimbo, Tomo III, se obtuvieron los siguientes resultados para las obras de intercepción del escurrimiento de aguas lluvias de la microcuenca Los Rulos, de Canela Alta, siendo sus factores de seguridad superiores a los indicados en el cuadro N° 1.

LA MORALINA - MURO DE INTERCEPCIÓN DE GAVIONES MURO N° 1

NIVEL	Н	В	FS DESLIZAMIENTO		FS VOLCA	AMIENTO
	[m]	[m]	ESTATICO	SISMICO	ESTATICO	SISMICO
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 1.5
NV3	0,5	1	-	2,8	-	8,0
NV2	1	1	7,5	2,6	25,2	2,6
NV1	1	2	2,67	2,23	8,48	4,04
N3	1	3	1,91	2,07	5,86	4,43
N2	1	4	1,63	1,97	4,88	4,55
N1	1	6	1,57	1,96	5,79	6,00
GENERAL						
VERTEDERO	3	6	1,56	1,9	5,3	7,0

LA MORALINA - MURO DE INTERCEPCIÓN DE GAVIONES MURO N° 2

NIVEL	н	В	FS DESLIZ	FS DESLIZAMIENTO		CAMIENTO
	[m]	[m]	ESTATICO	SISMICO	ESTATICO	SISMICO
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 1.5
NV3	0,5	1	-	2,8	-	8,0
NV2	1	1	5,9	2,5	17,7	2,6
NV1	1	2	2,43	2,19	7,35	3,95
N3	1	3	1,80	2,03	5,36	4,34
N2	1	4	1,56	1,95	4,57	4,47
N1	1	6	1,52	1,93	5,50	5,90
GENERAL						
VERTEDERO	3	6	1,52	1,9	5,1	6,9

LA MORALINA - MURO DE INTERCEPCIÓN DE GAVIONES MURO N° 3

NIVEL	Н	В	FS DESLIZ	FS DESLIZAMIENTO		CAMIENTO
	[m]	[m]	ESTATICO	SISMICO	ESTATICO	SISMICO
			MIN 1.5	MIN 1.2	MIN 2.0	MIN 1.5
NV3	0,5	1	-	2,8	-	8,0
NV2	1	1	3,9	2,4	9,4	2,5
NV1	1	2	2,01	2,09	5,54	3,76
N3	1	3	1,60	1,96	4,47	4,14
N2	1	5	1,56	1,95	5,64	5,94
N1	1	6	1,50	1,93	5,06	5,65
GENERAL						
VERTEDERO	3	6	1,53	1,9	4,7	6,5

8. TUBERÍA DE DRENAJE Y POZO LATERAL

El diseño de las obras de intercepción del flujo de aguas lluvias, contempla como obra complementaria, la instalación de una tubería de drenaje a ubicarse al pie de la lámina HDPE, con el objeto de captar parte del agua que se infiltrará y conducirla a un costado de la quebrada hacia un pozo construido con tubería de HDPE, de baja presión, reforzada, que cumpla la doble función para extraer el agua o para medir la altura de agua de la napa.

Con este pozo lateral, se podrá medir la altura de agua en la napa y su descarga natural hacia acuíferos de cota más baja.

La tubería horizontal de drenaje se ha considerado que sea de tipo topdren de drenaflex, de 500 mm de diámetro. La tubería vertical, que servirá de pozo y piezómetro, se ha considerado que sea una tubería tipo ADS, corrugada de 500 mm.

9. METODOLOGIA DE DISEÑO DE OBRAS DE INTERCEPCION DE FLUJO SUPERFICIAL

En este capítulo, pretendemos indicar los pasos técnicos que se deben seguir para diseñar obras de intercepción de flujo superficial de aguas, en cauces naturales de corrientes discontinuas formadas por aguas pluviales. Lo indicado en este capítulo, deriva del estudio realizado y de las experiencias adquiridas en este trabajo.

Para efectos de diseño de obras de intercepción de flujo superficial de aguas, en cauces naturales de corrientes discontinuas formadas por aguas pluviales, ya definidas por los interesados, es decir, la intervención de microcuencas seleccionadas por los interesados, no es necesario desarrollar la metodología de selección de microcuencas desarrollada en este estudio, ya que este método se realizó con el objeto de elegir microcuencas que cumpliesen con los objetivos indicados en los Términos de Referencia de la Propuesta y que las microcuencas seleccionadas fuesen representativas del secano costero, secano intermedio o secano muy afectado por el período de escasez de lluvia en estos últimos años.

De la misma forma, considerando tanto el costo como, los aspectos prácticos para definir la profundidad a la cual se instalará la lámina de polietileno de alta densidad (HDPE), no es necesario desarrollar los estudios de sondajes eléctricos verticales (S.E.V.), ya que bastaría con un muestreo mediante calicatas a una profundidad de 5 metros a realizar mediante excavadora.

Por lo tanto, considerando lo señalado anteriormente, la metodología recomendada a seguir para diseñar obras de intercepción de flujo superficial de aguas, en cauces naturales de corrientes discontinuas formadas por aguas pluviales, es la siguiente.

9.1 Elección del punto de emplazamiento de las obras.

Se recomienda que para la elección del punto de emplazamiento de obras de intercepción de flujo superficial de aguas se cumplan las siguientes consideraciones técnicas:

9.1.1 Cuenca aportante.

Es importante que la cuenca aportante sea de una superficie inferior a 500 has., ya que los caudales de escorrentía deben ser de caudales manejables, del orden de 1 a 20 l/s, para que las obras a diseñar controlen fácilmente la escorrentía y la velocidad de escurrimiento del agua. Estas

condiciones se encuentran en las cabeceras de las microcuencas. Esto significa a su vez, que la microcuenca debiese ser de primer orden.

9.1.2 Pendiente del cauce principal.

Si bien, el sector de la microcuenca a elegir debe ser de cabecera, debe tenerse en consideración la pendiente del cauce principal, pendiente que debe oscilar entre 1 a 4%. Es importante esta consideración, ya que ello permitirá dejar bajo influencia de la obra de intercepción, en el cauce principal, una longitud superior a 100 metros, lo que asegura acumular volúmenes de agua que debieran ser superiores a 500 o 1.000 m3 de agua.

9.1.3 Determinación de la superficie de la cuenca aportante.

Debe determinarse la la superficie de la cuenca aportante mediante planos generados en la zona por el Instituto Geográfico Militar (IGM), en escala 1: 5.000 o inferior. Es importante la precisión de la determinación de la cuenca aportante, ya que influye directamente en el caudal de escurrimiento a generarse en el punto de emplazamiento de la obra.

9.1.4 Considerar obras, construcciones existentes y áreas agrícolas en uso.

En las áreas de secano, especialmente en las de propiedad de Comunidades Agrícolas, parte de la superficie esta otorgada como goces singulares, de tal forma que parte de los cauces naturales son ocupados ya sea para el uso agrícola, construcción de pozos, cruce de caminos para acceder a los terrenos de los goces singulares, la existencia de cercos, etc.

Deben considerarse estas obras u ocupaciones, ya que si bien las obras de intercepción de aguas lluvias y su acumulación de agua son importantes, deben respetarse la existencia de obras particulares o fiscales, especialmente en este último caso, las obras viales.

9.1.5 Cálculos hidrológicos.

Es importante desarrollar los cálculos hidrológicos para determinar los caudales de escorrentía y caudales máximos instantáneos de crecidas. Teniendo presente que las cuencas de las áreas de secano de la Región de Coquimbo son de carácter pluvial, deben efectuarse los cálculos hidrológicos en base a estadísticas pluviométricas, utilizando información oficial medida y controlada por la Dirección General de Aguas (DGA), del Ministerio de Obras Públicas. Para ello, debe utilizarse la información pluviométrica de precipitaciones mensuales y precipitaciones máximas anuales de estaciones meteorológicas más cercanas a los puntos de los futuros emplazamientos de las obras y hacer los rellenos estadísticos que correspondan, si esta estadística se encuentra incompleta o descontinuada.

Para el cálculo de escorrentía mensual, se recomienda utilizar la fórmula de Peñuelas, fórmula especialmente definida por el Ingeniero A. Quintana, para las condiciones climáticas y de suelos de la Quinta Región de Chile al Norte. La escorrentía anual obtenida, debe distribuirse mensualmente mediante la fórmula de la curva número.

La determinación de la crecida, se recomienda que ésta se realice para un período de ocurrencia de 1:200 años. La crecida determinada con este período de ocurrencia, permitirá posteriormente dimensionar la obra y otorgar una seguridad de estabilidad de ésta, para eventos

ocasionales de una envergadura de ocurrencia de 1:200 años. Es probable que se considere que las obras diseñadas con el cálculo de una crecida con un período de retorno tan exigente se considere sobre dimensionada, pero es importante considerar que, la cosecha de aguas lluvias debe hacerse con varias obras de intercepción de escurrimiento superficial y subterráneo y la estabilidad de estas obras debe ser alta, ya que el colapso de alguna de ellas, puede generar el colapso de las obras de intercepción de escurrimiento, ubicadas a continuación de ésta. Es importante esta consideración, ya que normalmente en las áreas de secano de la Región de Coquimbo, existen casas individuales cerca de los cauces naturales, obras viales, captaciones de agua potable rural, poblados, que podrían verse afectados ante la ocurrencia de una crecida de magnitud y afectar a sus habitantes, pudiendo poner en riesgo, incluso sus vidas.

Se recomienda para determinar las crecidas, el uso del método de Hidrograma Unitario Sintético.

9.1.6 Cálculos hidráulicos.

Las obras de intercepción del escurrimiento de aguas lluvias, hidráulicamente deben ser eficientes para evacuar los excedentes de agua que se presentarán en cada evento lluvioso, si el volumen de agua a escurrir, excede la capacidad de acumulación de las obras a construir.

Hidráulicamente, la obra más adecuada para cumplir esta función es la de un vertedero. Por esta razón, es necesario determinar la forma y dimensión de la obra tipo vertedero, que permita funcionar correctamente en cada evacuación de excedentes de agua y que ésta obra no pierda su estabilidad. Por lo tanto, deben efectuarse simulaciones hidráulicas, para caudales determinados hidrológicamente para un período de ocurrencia de 1:200 años. Para estos efectos, se recomienda utilizar el software computacional HEC-RAS. Definiendo los coeficientes de rugosidad y condiciones de borde.

También debe realizarse un estudio de mecánica fluvial, para determinar la socavación que genera un caudal de un período de ocurrencia 1:200 años y dimensionar la manta de protección al pie de la obra, para protegerla del impacto del resalto y evitar una erosión retrógrada.

9.1.7 Tipo de obras recomendadas.

Las obras recomendadas para interceptar el flujo superficial del escurrimiento de las aguas lluvias, son obras a construir mediante gaviones. Se recomienda este tipo de obra por la facilidad de construcción, el aprovechamiento de los elementos existentes en el lugar (piedras) y que pueden obtenerse de la excavación para la instalación de la lámina de polietileno de alta densidad (HDPE), su bajo costo y el requerimiento de mano de obra no especializada, que con una simple capacitación, puede captarse en los lugares de emplazamiento de las obras, generando con esto, una oportunidad de trabajo para los habitantes del secano de la Región de Coquimbo.

9.1.8 Cálculos estructurales.

Definidas las obras desde el punto de vista hidráulico, se deben efectuar los cálculos estructurales para que éstas cumplan con los factores de seguridad admisible para condiciones estáticas y y sísmicas al deslizamiento y al volcamiento.

9.1.9 Presupuesto.

Debe determinarse un presupuesto detallado de las actividades y obras a desarrollar, con análisis de precios unitarios, respaldados con cotizaciones de la plaza, considerando el transporte de materiales y maquinarias a los puntos de emplazamiento de las obras.

10. PRESUPUESTO DE LAS OBRAS DISEÑADAS.

Para el desarrollo del presupuesto de las obras a construir en las microcuencas seleccionas en este estudio, se realizaron análisis de precios unitarios y se cotizaron los elementos a utilizar y maquinaria en la plaza de Ovalle, los que se presentan en el Anexo Estudio cosecha de aguas lluvias en áreas de secano. Región de Coquimbo. Tomo III.

10.1 Presupuestos detallados.

Los presupuestos detallados para las obras de intercepción del flujo superficial y subterráneo para la cosecha de aguas en áreas de secano de la Región de Coquimbo, son los siguientes:

10.1.1 Presupuestos detallados de las obras de la Microcuenca La Isla . Peña Blanca.

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LA ISLA - COMUNIDAD AGRÍCOLA DE PEÑABLANCA COMUNA DE OVALLE - PROVINCIA DE LIMARI

N° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
1	Instalación de faena					precio unitario
	Galpon	m2	35.00	23.586	825,510	p
	Caseta	uni	1.00	179,345	179,345	
ARRERA Nº	'1			-,-	.,.	
2	Replanteo y control topográfico	dia	5.00	186,711	933,555	precio unitario
3	Excavación de cubeta	m3	1,412.01	3,065	4,327,246	precio unitario
4	Relleno arneado	m3	282.40	1,928	544,488	precio unitario
5	Relleno arneado adicional	m3	1,129.61	1,928	2,177,952	precio unitario
6	Instalación lámina impermeable					•
6.1	Preparación talud	m2	323.00	750	242,250	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m2	323.00	2,685	867,255	precio unitario
6.3	Suministro y colocación geotextil 200 gr	m2	323.00	562	181,526	precio unitario
7	Instalación tubos de drenaje 500 mm	m	32.00	25,518	816,591	
8	Acarreo y selección de piedras	m3	352.00	4,000	1,408,000	
9	Colocación gaviones					
9.1	Nivelación terreno	m3	37.20	532	19,799	precio unitario
9.2	Compactación terreno	m3	37.20	686	25,514	·
9.3	Instalación gaviones galvanizados 3x1x1	un	36.00	30,275	1,089,893	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	un	98.00	30,256	2,965,069	precio unitario
9.5	Instalación gaviones galvanizados 3x1x0.5	un	9.00	35,918	323,260	
9.6	Instalación gaviones galvanizados 2x1x0.5	un	34.00	35,913	1,221,036	precio unitario
10	Colocación empedrado	m2	37.20	10,500	390,600	
11	Traslado maquinaria (ida y vuelta)	Km	128.00	2,000	256,000	precio unitario
12	Transporte materiales Ovalle - Peñablanca	viajes	128.00	3,500	448,000	Cotización
13	Gastos generales	ģl	1.00	2,780,833	2,780,833	
14	Imprevistos	gl	1.00	556,167	556,167	
15	Utilidad	gl	1.00	3,337,000	3,337,000	
	Inspección Técnica de Obras (ITO)	mes	1.50	2,500,000	3,750,000	
	TOTAL NETO (\$):				29,666,889	
	IVA (\$) :				5,636,709	
	TOTAL (\$)				35,303,598	

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LA ISLA - COMUNIDAD AGRÍCOLA DE PEÑABLANCA COMUNA DE OVALLE - PROVINCIA DE LIMARI

I° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
RRERA N	° 2					
2	Replanteo y control topográfico	dia	5.00	186,711	933.555	precio unitario
3	Excavación de cubeta	m3	907.64	3.065	2.781.554	precio unitario
4	Relleno arneado	m3	181.53	1,928	349,997	precio unitario
5	Relleno arneado adicional	m3	726.11	1,928	1,399,988	precio unitario
6	Instalación lámina impermeable			,-	,,	
6.1	Preparación talud	m2	188.00	750	141,000	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m2	188.00	2,685	504,780	precio unitario
6.3	Suministro y colocación geotextil 200 gr	m2	188.00	562	105,656	precio unitario
7	Instalación tubos de drenaje 500 mm	m	20.00	25,518	510,369	•
8	Acarreo y selección de piedras	m3	651.00	4,000	2,604,000	
9	Colocación gaviones			·		
9.1	Nivelación terreno	m3	76.00	532	40,450	precio unitario
9.2	Compactación terreno	m3	76.00	686	52,125	•
9.3	Instalación gaviones galvanizados 3x1x1	un	159.00	30,275	4,813,695	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	un	62.00	30,256	1,875,860	precio unitario
9.5	Instalación gaviones galvanizados 3x1x0.5	un	19.50	35,918	700,397	•
9.6	Instalación gaviones galvanizados 2x1x0.5	un	21.00	35,913	754,169	precio unitario
10	Colocación empedrado	m2	76.00	10,500	798,000	•
11	Transporte Ovalle - Peñablanca	Km	128.00	3,500	448,000	Cotización
12	Gastos generales	gl	1.00	2,754,839	2,754,839	
13	Imprevistos	gl	1.00	550,968	550,968	
14	Utilidad	gl	1.00	3,305,807	3,305,807	
	Inspección Técnica de Obras (ITO)	mes	1.50	2,500,000	3,750,000	
	TOTAL NETO (\$) :	11103	1.50	2,500,000	29,175,209	
	IVA (\$) :				5,543,290	
	TOTAL (\$)				34,718,499	

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LA ISLA - COMUNIDAD AGRÍCOLA DE PEÑABLANCA COMUNA DE OVALLE - PROVINCIA DE LIMARI

° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
RERA N	• 9					
TILLIA II						
2	Replanteo y control topográfico	dia	5.00	186,711	933,555	precio unitario
3	Excavación de cubeta	m3	4,737.99	3,065	14,520,044	precio unitario
4	Relleno arneado	m3	947.60	1,928	1,827,026	precio unitario
5	Relleno arneado adicional	m3	758.08	1,928	1,461,621	precio unitario
6	Instalación lámina impermeable					
6.1	Preparación talud	m3	889.00	750	666,750	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m3	889.00	2,685	2,386,965	precio unitario
6.3	Suministro y colocación geotextil 200 gr	kg	889.00	562	499,618	precio unitario
7	Instalación tubos de drenaje 500 mm		82.00	25,518	2,092,515	
8	Acarreo y selección de piedras	m3	766.00	4,000	3,064,000	
9	Colocación gaviones					
9.1	Nivelación terreno	m3	324.00	532	172,446	precio unitario
9.2	Compactación terreno	m3	324.00	686	222,215	
9.3	Instalación gaviones galvanizados 3x1x1	un	84.00	30,275	2,543,084	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	un	178.00	30,256	5,385,534	precio unitario
9.5	Instalación gaviones galvanizados 3x1x0.5	un	66.00	35,918	2,370,575	
9.6	Instalación gaviones galvanizados 2x1x0.5	un	59.00	35,913	2,118,856	precio unitario
10	Colocación empedrado	m2	324.00	10,500	3,402,000	
11	Transporte Ovalle - Peñablanca	Km	128.00	3,500	448,000	Cotización
12	Gastos generales	gl	1.00	6,550,021	6,550,021	
13	Imprevistos	gl	1.00	1,310,004	1,310,004	
14	Utilidad	gl	1.00	7,860,025	7,860,025	
	Inspección Técnica de Obras (ITO)	mes	1.50	2,500,000	3,750,000	
	TOTAL NETO (\$): IVA (\$):				63,584,854 12,081,122	
	TOTAL (\$)				75,665,976	

10.1.2 Presupuestos detallados de las obras de la Microcuenca Los Rulos. Canela Alta.

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LOS RULOS - COMUNIDAD AGRÍCOLA DE CANELA ALTA COMUNA DE CANELA - PROVINCIA DE CHOAPA

N° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
1	Instalación de faena					precio unitario
	Galpon	m2	35.00	23,586	825,510	
	Caseta	uni	1.00	179,345	179,345	
ARRERA N	'1					
2	Replanteo y control topográfico	dia	5.00	186,711	933,555	precio unitario
3	Excavación de cubeta	m3	3,357.43	3,065	10,289,180	precio unitario
4	Relleno arneado	m3	671.49	1,928	1,294,665	precio unitario
5	Relleno arneado adicional	m3	2,685.94	1,928	5,178,661	precio unitario
6	Instalación lámina impermeable					
6.1	Preparación talud	m2	723.00	750	542,250	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m2	723.00	2,685	1,941,255	precio unitario
6.3	Suministro y colocación geotextil 200 gr	m2	723.00	563	407,049	precio unitario
7	Instalación tubos de drenaje 500 mm	m	57.00	25,518	1,454,553	
8	Acarreo y selección de piedras	m3	1,071.00	3,000	3,213,000	
9	Colocación gaviones					
9.1	Nivelación terreno	m3	84.00	532	44,708	precio unitario
9.2	Compactación terreno	m3	84.00	686	57,611	
9.3	Instalación gaviones galvanizados 3x1x1	m3	183.00	30,275	5,540,290	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	m3	200.00	30,256	6,051,162	precio unitario
9.6	Instalación gaviones galvanizados 3x1x0.5	m3	81.00	35,918	2,909,343	precio unitario
10	Colocación empedrado	m2	84.00	10,500	882,000	
11	Traslado maquinaria (ida y vuelta)	Km	290.00	2,000	580,000	precio unitario
12	Transporte materiales Ovalle - Los Rulos	viajes	290.00	3,500	1,015,000	Cotización
13	Gastos generales	gl	1.00	6,261,621	6,261,621	
14	Imprevistos	gl		1,252,324	1,252,324	
15	Utilidad	gl	1.00	7,513,945	7,513,945	
	Inspección Técnica de Obras (ITO)	mes	1.50	2.500.000	3,750,000	
	TOTAL NETO (\$) :	11162	1.50	۷,500,000	62,117,027	

	IVA (\$) :				11,802,235	
	TOTAL (\$)				73,919,262	

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LOS RULOS - COMUNIDAD AGRÍCOLA DE CANELA ALTA COMUNA DE CANELA - PROVINCIA DE CHOAPA

N° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
RRERA N	° 2					
2	Replanteo y control topográfico	dia	5.00	186,711	933,555	precio unitario
3	Excavación de cubeta	m3	2,950.93	3,065	9,043,420	precio unitario
4	Relleno arneado	m3	590.19	1,928	1,137,914	precio unitario
5	Relleno arneado adicional	m3	2,360.74	1,928	4,551,656	precio unitario
6	Instalación lámina impermeable					·
6.1	Preparación talud	m2	600.00	750	450,000	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m2	600.00	2,685	1,611,000	precio unitario
6.3	Suministro y colocación geotextil 200 gr	m2	600.00	563	337,800	precio unitario
7	Instalación tubos de drenaje 500 mm	m	48.00	25,518	1,224,887	
8	Acarreo y selección de piedras	m3	921.00	3,000	2,763,000	
9	Colocación gaviones					
9.1	Nivelación terreno	m3	235.00	532	125,076	precio unitario
9.2	Compactación terreno	m3	235.00	686	161,175	
9.3	Instalación gaviones galvanizados 3x1x1	un	159.00	30,275	4,813,695	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	un	150.00	30,256	4,538,372	precio unitario
9.5	Instalación gaviones galvanizados 3x1x0.5	un	96.00	35,918	3,448,110	precio unitario
10	Colocación empedrado	m2	235.00	10,500	2,467,500	
11	Transporte Ovalle - Los Rulos	Km	290.00	3,500	1,015,000	Cotización
12	Gastos generales	gl	1.00	5,641,074	5,641,074	
13	Imprevistos	gl	1.00	1,128,215	1,128,215	
14	Utilidad	gl	1.00	6,769,289	6,769,289	
	Inspección Técnica de Obras (ITO)	mes	1.50	2,500,000	3,750,000	
	TOTAL NETO (\$) :	55		2,000,000	55,910,738	
	IVA (\$) :				10,623,040	
	TOTAL (\$)				66,533,778	

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LOS RULOS - COMUNIDAD AGRÍCOLA DE CANELA ALTA COMUNA DE CANELA - PROVINCIA DE CHOAPA

N° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
RRERA N	° 3					
2	Replanteo y control topográfico	dia	5.00	186,711	933,555	precio unitario
3	Excavación de cubeta	m3	2,515.33	3,065	7,708,480	precio unitario
4	Relleno arneado	m3	503.07	1,928	969,941	precio unitario
5	Relleno arneado adicional	m3	402.45	1,928	775,953	precio unitario
6	Instalación lámina impermeable					
6.1	Preparación talud	m3	546.00	750	409,500	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m3	546.00	2,685	1,466,010	precio unitario
6.3	Suministro y colocación geotextil 200 gr	kg	546.00	563	307,398	precio unitario
7	Instalación tubos de drenaje 500 mm		44.00	25,518	1,122,813	
8	Acarreo y selección de piedras	m3	800.00	3,000	2,400,000	
9	Colocación gaviones					
9.1	Nivelación terreno	m3	215.00	532	114,432	precio unitario
9.2	Compactación terreno	m3	215.00	686		
9.3	Instalación gaviones galvanizados 3x1x1	un	141.00	30,275	4,268,748	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	un	148.00	30,256	4,477,860	precio unitario
9.5	Instalación gaviones galvanizados 3x1x0.5	un	54.00	35,918	1,939,562	precio unitario
10	Colocación empedrado	m2	215.00	10,500	2,257,500	
11	Transporte Ovalle - Los Rulos	Km	290.00	3,500	1,015,000	Cotización
12	Gastos generales	gl	1.00	4,372,763	4,372,763	
13	Imprevistos	gl	1.00	874,553	874,553	
14	Utilidad	gl	1.00	5,247,315	5,247,315	
	Inspección Técnica de Obras (ITO)	mes	1.50	2,500,000	3,750,000	
	TOTAL NETO (\$) :	55		2,000,000	44,411,383	
	IVA (\$) :				8,438,163	
	TOTAL (\$)				52,849,546	

10.1.3 Presupuestos detallados de las obras de la Microcuenca La Moralina. Manquehua.

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LA MORALINA - COMUNIDAD AGRÍCOLA DE MANQUEHUA COMUNA DE OVALLE - PROVINCIA DE LIMARI

N° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
1	Instalación de faena					precio unitario
	Galpon	m2	35.00	23,586	825,510	
	Caseta	uni	1.00	179,345	179,345	
ARRERA N	°1			.,.	-,-	
2	Replanteo y control topográfico	dia	5.00	186,711	933,555	precio unitario
3	Excavación de cubeta	m3	3,079.70	3,065	9,438,049	precio unitario
4	Relleno arneado	m3	615.94	1,928	1,187,569	precio unitario
5	Relleno arneado adicional	m3	2,463.76	1,928	4,750,277	precio unitario
6	Instalación lámina impermeable					-
6.1	Preparación talud	m2	526.00	750	394,500	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m2	526.00	2,685	1,412,310	precio unitario
6.3	Suministro y colocación geotextil 200 gr	m2	526.00	563	296,138	precio unitario
7	Instalación tubos de drenaje 500 mm	m	39.00	25,518	995,220	
8	Acarreo y selección de piedras	m3	1,398.00	3,000	4,194,000	
9	Colocación gaviones					
9.1	Nivelación terreno	m3	68.40	532	36,405	precio unitario
9.2	Compactación terreno	m3	68.40	686	46,912	
9.3	Instalación gaviones galvanizados 3x1x1	un	288.00	30,275	8,719,145	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	un	188.00	30,256	5,688,092	precio unitario
9.6	Instalación gaviones galvanizados 3x1x0.5	un	105.00	35,918	3,771,370	precio unitario
10	Colocación empedrado	m2	68.40	10,500	718,200	
11	Traslado maquinaria (ida y vuelta)	Km	105.40	2,000	210,800	precio unitario
12	Transporte materiales Ovalle - Peñablanca	viajes	105.40	3,500	368,900	Cotización
13	Gastos generales	gl	1.00	6,537,990	6,537,990	
14	Imprevistos	gl		1,307,598	1,307,598	
15	Utilidad	gl	1.00	7,845,587	7,845,587	
	Inspección Técnica de Obras (ITO) TOTAL NETO (\$) :	mes	1.50	2,500,000	3,750,000 63,607,472	
	IVA (\$) :				12,085,420	
	TOTAL (\$)				75,692,892	

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LA MORALINA - COMUNIDAD AGRÍCOLA DE MANQUEHUA COMUNA DE OVALLE - PROVINCIA DE LIMARI

N° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
BARRERA N	° 2					
2	Replanteo y control topográfico	dia	5.00	186,711	933,555	precio unitario
3	Excavación de cubeta	m3	3.272.55	3,065	10,029,057	precio unitario
4	Relleno arneado	m3	654.51	1.928	1.261.935	precio unitario
5	Relleno arneado adicional	m3	2.618.04	1.928	5,047,738	precio unitario
6	Instalación lámina impermeable		,	, ,	-,- ,	,
6.1	Preparación talud	m2	483.00	750	362.250	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m2	483.00	2,685	1,296,855	precio unitario
6.3	Suministro y colocación geotextil 200 gr	m2	483.00	563	271.929	precio unitario
7	Instalación tubos de drenaje 500 mm	m	36.00	25,518	918,665	,
8	Acarreo y selección de piedras	m3	1,378.00	3,000	4,134,000	
9	Colocación gaviones					
9.1	Nivelación terreno	m3	210.00	532	111,770	precio unitario
9.2	Compactación terreno	m3	210.00	686	144,029	•
9.3	Instalación gaviones galvanizados 3x1x1	un	270.00	30,275	8,174,199	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	un	214.00	30,256	6,474,743	precio unitario
9.5	Instalación gaviones galvanizados 3x1x0.5	un	93.00	35,918	3,340,356	precio unitario
10	Colocación empedrado	m2	210.00	10,500	2,205,000	•
11	Transporte Ovalle - Peñablanca	Km	105.40	3,500	368,900	Cotización
12	Gastos generales	gl	1.00	6,705,912	6,705,912	
13	Imprevistos	gl	1.00	1,341,182	1,341,182	
14	Utilidad	gl	1.00	8,047,095	8,047,095	
	Inspección Técnica de Obras (ITO)	mes	1.50	2,500,000	3,750,000	
	TOTAL NETO (\$) :	11103	1.50	2,000,000	64,919,170	
	IVA (\$) :				12,334,642	
	TOTAL (\$)				77,253,812	

PRESUPUESTO DETALLADO DE LAS OBRAS

CONSTRUCCIÓN BARRERAS DE INTERCEPCION SECTOR LA MORALINA - COMUNIDAD AGRÍCOLA DE MANQUEHUA COMUNA DE OVALLE - PROVINCIA DE LIMARI

I° ITEM	NOMBRE ITEM	UN	CANT.	P.U.(\$)	P.T.(\$)	
RERA N	° 3					
2	Replanteo y control topográfico	dia	5.00	186,711	933,555	precio unitario
3	Excavación de cubeta	m3	2,293.22	3,065	7,027,802	precio unitario
4	Relleno arneado	m3	458.64	1,928	884,293	precio unitario
5	Relleno arneado adicional	m3	1,834.58	1,928	3,537,173	precio unitario
6	Instalación lámina impermeable					
6.1	Preparación talud	m3	414.00	750	310,500	precio unitario
6.2	Suministro y Colocación Lámina HDPE 1,5 mm	m3	414.00	2,685	1,111,590	precio unitario
6.3	Suministro y colocación geotextil 200 gr	kg	414.00	563	233,082	precio unitario
7	Instalación tubos de drenaje 500 mm		31.00	25,518	791,073	
8	Acarreo y selección de piedras	m3	515.00	3,000	1,545,000	
9	Colocación gaviones					
9.1	Nivelación terreno	m3	180.00	532	95,803	precio unitario
9.2	Compactación terreno	m3	180.00	686		
9.3	Instalación gaviones galvanizados 3x1x1	un	104.00	30,275	3,148,580	precio unitario
9.4	Instalación gaviones galvanizados 2x1x1	un	55.00	30,256	1,664,070	precio unitario
9.5	Instalación gaviones galvanizados 3x1x0.5	un	62.00	35,918	2,226,904	precio unitario
10	Colocación empedrado	m2	180.00	10,500	1,890,000	
11	Transporte Ovalle - Peñablanca	Km	105.40	3,500	368,900	Cotización
12	Gastos generales	gl	1.00	3,809,914	3,809,914	
13	Imprevistos	gl	1.00	761,983	761,983	
14	Utilidad	gl	1.00	4,571,897	4,571,897	
	Inspección Técnica de Obras (ITO)	mes	1.50	2,500,000	3,750,000	
	TOTAL NETO (\$) :	11103	1.50	2,000,000	38,662,119	
	IVA (\$) :				7,345,803	
	TOTAL (\$)				46,007,922	

Valor del dólar al 06-10-2015 : \$ 685.83

10.1.4 Resumen Presupuestos detallados.

RESUMEN COSTO CONSTRUCCION OBRAS COSECHA DE AGUAS LLUVIAS VALORES TOTALES (IVA incluido)

	PEÑABLANCA	CANELA ALTA	MANQUEHUA
OBRA	LA ISLA	LOS RULOS	LA MORALINA
	(\$)	(\$)	(\$)
MURO 1	35,303,598	73,919,262	75,692,892
MURO 2	34,718,499	66,533,778	77,253,812
MURO 3	75,665,976	52,849,546	46,007,922
TOTAL	145,688,073	193,302,586	198,954,626

11. CONCLUSIONES.

El área de secano de la Región de Coquimbo, siempre se ha visto afectada por los años de bajas precipitaciones.

Décadas atrás, era común ver a los comuneros del secano costero, sembrar trigo de rulo, obteniendo rendimientos muy variados dependiendo de las precipitaciones de la temporada. De la misma forma, el secano interior, que se ha dedicado preferentemente a la crianza de ganado caprino, ha visto disminuir la masa ganadera por la reducción de las precipitaciones.

La disminución de las precipitaciones, ya es una constante. Todos los análisis pluviométricos indican que seguirán disminuyendo las precipitaciones en general en el país, situación que afecta considerablemente a las áreas de secano, al no contar con obras que les permita captar y recolectar el escurrimiento de las aguas pluviales.

Esta situación de escasez de precipitaciones, que ya podemos considerar como permanente, obliga a tomar iniciativas para captar y aprovechar al máximo los escurrimientos de aguas lluvias, que los habitantes de las áreas de secano ven normalmente escurrir y perderse en el mar o cuencas intermedias.

En las áreas de secano, de acuerdo a lo señalado por la bibliografía revisada, se han construido obras para retener aguas lluvias, pero éstas han tenido como objetivo principal la protección del suelo más que captar y retener parte del escurrimiento superficial generado por las precipitaciones pluviales. Además, estas obras no han podido demostrar cuantitativamente la cantidad de agua que de una u otra forma han logrado retener en el suelo.

Es probable, que al no tener una evaluación cuantitativa de volúmenes de agua retenidas por las obras construidas en distintas áreas de secano, no generase un interés de las autoridades para invertir en obras de captación de aguas en las áreas de secano.

Por otra parte, diferentes estudios de obras de tamaño medio de acumulación de agua (embalses de capacidades superiores a 10 millones de metros cúbicos de agua), han demostrado que no son factibles económicamente.

El presente estudio, se ha desarrollado con el objeto de diseñar obras de intercepción del flujo superficial y subterráneo del agua generado por las precipitaciones, teniendo como ides principal, retener pequeños volúmenes de agua, forzarlos a infiltrarse y generar la recarga de los acuíferos naturales (napas) o generar embalses subterráneos en zonas donde no hay buenas retenciones de agua.

Con el objeto de contar con una evaluación cuantitativa de los volúmenes de agua que escurren y que pueden retenerse mediante pequeñas obras en cauces naturales de escurrimiento intermitente, se estudiaron tres microcuencas de las áreas de secano tratando de cubrir áreas con diferentes características de precipitación, superficies aportantes, pendientes de los cauces principales y tipos de suelos y se aplicaron técnicas de topografía, hidrología e hidráulica, que han permitido determinar los volúmenes de agua que se generan en las microcuencas estudiadas y dimensionarlas y finalmente realizarles los cálculos estructurales que aseguren la estabilidad de ellas, para evitar el deslizamiento y/o volcamiento de ellas.

La estructura de las obras se definió en base a gaviones, los que se complementan con la aplicación de láminas de polietileno de alta densidad (HDPE), que al quedar protegidos contra los rayos ultravioletas de la luz solar, aseguran una vida útil superior a 15 años. La aplicación de la lámina HDPE, impermeabiliza la barrera de gaviones y se ha establecido continuar con su

instalación en el interior del suelo, en el mismo sentido de la barrera de intercepción superficial, es decir, perpendicular al flujo de agua, hasta una profundidad de 5 metros. Este tipo de obra, permitirá interceptar el flujo superficial y subterráneo del agua hasta una profundidad de 5 metros, obligando con ello al recurso hídrico, infiltrarse y recargar artificialmente los acuíferos naturales.

De acuerdo a los cálculos desarrollados estas obras permitirán retener escurrimiento de aguas lluvias, generados por bajas precipitaciones, lo que hace que estas obras funcionen prácticamente todos los años y se genere una recarga permanente de los acuíferos, incluso en los períodos de muy baja precipitación. Para demostrar este, se han realizado simples simulaciones hidrológicas, haciendo funcionar teóricamente estas obras, por un período de 35 años, pudiendo demostrarse su funcionamiento constante y permanente en cada temporada agrícola.

Por lo tanto, podemos concluir, que estas obras permitirían captar o cosechar volúmenes significativos de agua de origen pluvial y aumentar considerablemente la disponibilidad de agua para las áreas de secano de la Región de Coquimbo.

Es importante destacar, que el diseño de estas obras tiene carácter de investigación aplicada, es decir, deben construirse y someterse a un período de evaluación para comprobar lo que teóricamente se ha concluido.

El secano de la Región de Coquimbo, posee condiciones climáticas y de suelos adecuadas para un desarrollo silvoagropecuario importante, que de disponer de una mayor cantidad de agua, podría expresar todo su potencial productivo.

12. RECOMENDACIONES DE FINANCIAMIENTO FUTURO DE OBRAS DE COSECHA DE AGUAS LLUVIAS.

La necesidad de retener o cosechar las aguas lluvias en el sector secano de la Región de Coquimbo, o en otras regiones del país, es hoy un objetivo que deben tener en consideración los gobiernos de Chile.

La constante disminución de las precipitaciones, está generando una disminución de disponibilidad de agua no solo para las actividades económicas de la región, sino que también para el abastecimiento de agua potable para los habitantes del secano. Esto se ve actualmente reflejado en el gasto que están realizando las Municipalidades Rurales en la contratación de camiones aljibes para abastecer de agua potable a las localidades rurales o casas individuales.

Si la evaluación de estas obras, que se han diseñado para captar o cosechar el escurrimiento de aguas lluvias, generadas por bajas precipitaciones y su posterior recarga de acuíferos, es positiva, recomendamos que sea una prioridad del estado chileno establecer una política de estado para la construcción de estas obras, para enfrentar el déficit de recurso hídrico que se esta generando en la región.

Considerando este aspecto, recomendamos que el estado debe destinar parte de sus recursos económicos para la cosecha de aguas lluvias, ya sea construyendo este tipo de obras y/u obras complementarias que podrían estudiarse y diseñarse teniendo en consideración las características topográficas y de precipitación en cada zona.

Al igual como se estableció una política de estado, para optimizar la acumulación y aplicación del agua de riego, generando la Ley 18.450, de Fomento a la Inversión Privada en Riego y Drenaje, debiera crearse otro instrumento de fomento para cofinanciar la construcción de obras de

cosecha de aguas lluvias, donde los propietarios de las zonas de secano, sean estos Privados o Comunidades Agrícolas, tengan acceso a una línea de bonificación, para enfrentar los problemas que esta generando la constante disminución de las precipitaciones.

También podrían establecerse alianzas público-privado, entre las empresas mineras o industriales, establecidas en la región, donde éstas puedan colaborar en el cofinanciamiento de proyectos de diseño de obras para cosecha de aguas lluvias, cuyo futuro uso futuro puede ser compartido, tanto para el desarrollo minero como, para el abastecimiento de agua potable, principalmente.